BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10617855)

  • 1. Diversity of opsin immunoreactivities in the extraretinal tissues of four anuran amphibians.
    Okano K; Okano T; Yoshikawa T; Masuda A; Fukada Y; Oishi T
    J Exp Zool; 2000 Feb; 286(2):136-42. PubMed ID: 10617855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunoreactivities to rhodopsin and rod/cone transducin antisera in the retina, pineal complex and deep brain of the bullfrog, Rana catesbeiana.
    Yoshikawa T; Yashiro Y; Oishi T; Kokame K; Fukada Y
    Zoolog Sci; 1994 Oct; 11(5):675-80. PubMed ID: 7765855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different types of pinealocytes as revealed by immunoelectron microscopy of anti-S-antigen and antiopsin binding sites in the pineal organ of toad, frog, hedgehog and bat.
    Vigh-Teichmann I; Vigh B; Gery I; van Veen T
    Exp Biol; 1986; 45(1):27-43. PubMed ID: 2937652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunocytochemical localization of prohormone convertases PC1 and PC2 in the anuran pituitary gland: subcellular localization in corticotrope and melanotrope cells.
    Kurabuchi S; Tanaka S
    Cell Tissue Res; 1997 Jun; 288(3):485-96. PubMed ID: 9134861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual pigments in the pineal complex of the Japanese quail, Japanese grass lizard and bullfrog: immunocytochemistry and HPLC analysis.
    Masuda H; Oishi T; Ohtani M; Michinomae M; Fukada Y; Shichida Y; Yoshizawa T
    Tissue Cell; 1994 Feb; 26(1):101-13. PubMed ID: 8171418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep brain photoreceptive molecule in the toad hypothalamus.
    Yoshikawa T; Okano T; Oishi T; Fukada Y
    FEBS Lett; 1998 Mar; 424(1-2):69-72. PubMed ID: 9537517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The water-absorption region of ventral skin of several semiterrestrial and aquatic anuran amphibians identified by aquaporins.
    Ogushi Y; Tsuzuki A; Sato M; Mochida H; Okada R; Suzuki M; Hillyard SD; Tanaka S
    Am J Physiol Regul Integr Comp Physiol; 2010 Nov; 299(5):R1150-62. PubMed ID: 20811008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative studies on the electric nature of amphibian gonadotropin.
    Tanaka S; Park MK; Takikawa H; Wakabayashi K
    Gen Comp Endocrinol; 1985 Jul; 59(1):110-9. PubMed ID: 3874809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertebrate ancient (VA) opsin and extraretinal photoreception in the Atlantic salmon (Salmo salar).
    Philp AR; Garcia-Fernandez JM; Soni BG; Lucas RJ; Bellingham J; Foster RG
    J Exp Biol; 2000 Jun; 203(Pt 12):1925-36. PubMed ID: 10821749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-visual photoreception by a variety of vertebrate opsins.
    Kojima D; Fukada Y
    Novartis Found Symp; 1999; 224():265-79; discussion 279-82. PubMed ID: 10614056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonvisual photoreceptors of the deep brain, pineal organs and retina.
    Vigh B; Manzano MJ; Zádori A; Frank CL; Lukáts A; Röhlich P; Szél A; Dávid C
    Histol Histopathol; 2002 Apr; 17(2):555-90. PubMed ID: 11962759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pineal organ as a folded retina: immunocytochemical localization of opsins.
    Vígh B; Röhlich P; Görcs T; Manzano e Silva MJ; Szél A; Fejér Z; Vígh-Teichmann I
    Biol Cell; 1998 Dec; 90(9):653-9. PubMed ID: 10085541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opsin immunocytochemical characterization of different types of photoreceptors in the frog pineal organ.
    Vigh-Teichmann I; Vigh B
    J Pineal Res; 1990; 8(4):323-33. PubMed ID: 2144319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebrospinal fluid-contacting neurons, sensory pinealocytes and Landolt's clubs of the retina as revealed by means of an electron-microscopic immunoreaction against opsin.
    Vigh B; Vigh-Teichmann I; Röhlich P; Oksche A
    Cell Tissue Res; 1983; 233(3):539-48. PubMed ID: 6226359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ontogenetic development of S-antigen- and rod-opsin immunoreactions in retinal and pineal photoreceptors of Xenopus laevis in relation to the onset of melatonin-dependent color-change mechanisms.
    Korf B; Rollag MD; Korf HW
    Cell Tissue Res; 1989 Nov; 258(2):319-29. PubMed ID: 2531037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of neuropeptide FF-like immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians.
    Crespo M; Moreno N; López JM; González A
    J Chem Neuroanat; 2003 Jan; 25(1):53-71. PubMed ID: 12573459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of the ultrastructure and opsin immunocytochemistry of the pineal organ and retina of the deep-sea fish Chimaera monstrosa.
    Vigh-Teichmann I; Szél A; Röhlich P; Vigh B
    Exp Biol; 1990; 48(6):361-71. PubMed ID: 2142101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructure and opsin immunocytochemistry of the pineal complex of the larval Arctic charr Salvelinus alpinus: a comparison with the retina.
    Vigh-Teichmann I; Ali MA; Szél A; Vigh B
    J Pineal Res; 1991; 10(4):196-209. PubMed ID: 1833524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light perception in the vertebrate brain: an ultrastructural analysis of opsin- and vasoactive intestinal polypeptide-immunoreactive neurons in iguanid lizards.
    Grace MS; Alones V; Menaker M; Foster RG
    J Comp Neurol; 1996 Apr; 367(4):575-94. PubMed ID: 8731227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative ultrastructure of cerebrospinal fluid-contacting neurons and pinealocytes.
    Vigh B; Vigh-Teichmann I; Aros B
    Cell Tissue Res; 1975; 158(3):409-24. PubMed ID: 807327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.