BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 10619480)

  • 1. Calcium-dependent inactivation of neuronal calcium channel currents is independent of calcineurin.
    Zeilhofer HU; Blank NM; Neuhuber WL; Swandulla D
    Neuroscience; 2000; 95(1):235-41. PubMed ID: 10619480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of Ca(2+)-dependent inactivation of L-type Ca2+ channels in GH3 cells: direct evidence against dephosphorylation by calcineurin.
    Victor RG; Rusnak F; Sikkink R; Marban E; O'Rourke B
    J Membr Biol; 1997 Mar; 156(1):53-61. PubMed ID: 9070464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A modulatory role for protein phosphatase 2B (calcineurin) in the regulation of Ca2+ entry.
    Burley JR; Sihra TS
    Eur J Neurosci; 2000 Aug; 12(8):2881-91. PubMed ID: 10971631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signaling mechanisms of down-regulation of voltage-activated Ca2+ channels by transient receptor potential vanilloid type 1 stimulation with olvanil in primary sensory neurons.
    Wu ZZ; Chen SR; Pan HL
    Neuroscience; 2006 Aug; 141(1):407-19. PubMed ID: 16678970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized calcineurin confers Ca2+-dependent inactivation on neuronal L-type Ca2+ channels.
    Oliveria SF; Dittmer PJ; Youn DH; Dell'Acqua ML; Sather WA
    J Neurosci; 2012 Oct; 32(44):15328-37. PubMed ID: 23115171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of Ca2+ currents in rat thalamocortical relay neurons by activity and phosphorylation.
    Meuth S; Pape HC; Budde T
    Eur J Neurosci; 2002 May; 15(10):1603-14. PubMed ID: 12059968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurotensin modulates the amplitude and frequency of voltage-activated Ca2+ currents in frog pituitary melanotrophs: implication of the inositol triphosphate/protein kinase C pathway.
    Belmeguenai A; Leprince J; Tonon MC; Vaudry H; Louiset E
    Eur J Neurosci; 2002 Nov; 16(10):1907-16. PubMed ID: 12453054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biophysical properties, pharmacology, and modulation of human, neuronal L-type (alpha(1D), Ca(V)1.3) voltage-dependent calcium currents.
    Bell DC; Butcher AJ; Berrow NS; Page KM; Brust PF; Nesterova A; Stauderman KA; Seabrook GR; Nürnberg B; Dolphin AC
    J Neurophysiol; 2001 Feb; 85(2):816-27. PubMed ID: 11160515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A protein phosphatase 2calpha-Ca2+ channel complex for dephosphorylation of neuronal Ca2+ channels phosphorylated by protein kinase C.
    Li D; Wang F; Lai M; Chen Y; Zhang JF
    J Neurosci; 2005 Feb; 25(8):1914-23. PubMed ID: 15728831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of N-type calcium current in chick sensory neurons: calcium and voltage dependence.
    Cox DH; Dunlap K
    J Gen Physiol; 1994 Aug; 104(2):311-36. PubMed ID: 7807051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcineurin enhances L-type Ca(2+) channel activity in hippocampal neurons: increased effect with age in culture.
    Norris CM; Blalock EM; Chen KC; Porter NM; Landfield PW
    Neuroscience; 2002; 110(2):213-25. PubMed ID: 11958864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dopamine inhibits two characterized voltage-dependent calcium currents in identified rat lactotroph cells.
    Lledo PM; Legendre P; Israel JM; Vincent JD
    Endocrinology; 1990 Sep; 127(3):990-1001. PubMed ID: 2167220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of Ca2+ channel current and exocytosis in rat lactotrophs by basally active protein kinase C and calcineurin.
    Fomina AF; Levitan ES
    Neuroscience; 1997 May; 78(2):523-31. PubMed ID: 9145807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca(2+)-dependent inactivation of cardiac L-type Ca2+ channels does not affect their voltage sensor.
    Shirokov R; Levis R; Shirokova N; Ríos E
    J Gen Physiol; 1993 Dec; 102(6):1005-30. PubMed ID: 8133239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+ channels that activate Ca2+-dependent K+ currents in neostriatal neurons.
    Vilchis C; Bargas J; Ayala GX; Galván E; Galarraga E
    Neuroscience; 2000; 95(3):745-52. PubMed ID: 10670441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palmitoyl-DL-carnitine has calcium-dependent effects on cultured neurones from rat dorsal root ganglia.
    Stapleton SR; Currie KP; Scott RH; Bell BA
    Br J Pharmacol; 1992 Dec; 107(4):1192-7. PubMed ID: 1334752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and selectivity of a low-voltage-activated calcium current in chick and rat sensory neurones.
    Carbone E; Lux HD
    J Physiol; 1987 May; 386():547-70. PubMed ID: 2445968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous intracellular calcium buffering and the activation/inactivation of HVA calcium currents in rat dentate gyrus granule cells.
    Köhr G; Mody I
    J Gen Physiol; 1991 Nov; 98(5):941-67. PubMed ID: 1662686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mu-opioid and GABA(B) receptors modulate different types of Ca2+ currents in rat nodose ganglion neurons.
    Rusin KI; Moises HC
    Neuroscience; 1998 Aug; 85(3):939-56. PubMed ID: 9639286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-voltage-activated calcium currents in basal forebrain neurons during aging.
    Murchison D; Griffith WH
    J Neurophysiol; 1996 Jul; 76(1):158-74. PubMed ID: 8836216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.