These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 10619649)

  • 1. Coupling of beta and gamma activity in corticothalamic system of cats attending to visual stimuli.
    Bekisz M; Wróbel A
    Neuroreport; 1999 Nov; 10(17):3589-94. PubMed ID: 10619649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attention-dependent coupling between beta activities recorded in the cat's thalamic and cortical representations of the central visual field.
    Bekisz M; Wróbel A
    Eur J Neurosci; 2003 Jan; 17(2):421-6. PubMed ID: 12542680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oscillatory discharge in the visual system: does it have a functional role?
    Ghose GM; Freeman RD
    J Neurophysiol; 1992 Nov; 68(5):1558-74. PubMed ID: 1479430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for γ-band oscillations.
    Bastos AM; Briggs F; Alitto HJ; Mangun GR; Usrey WM
    J Neurosci; 2014 May; 34(22):7639-44. PubMed ID: 24872567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptive-field transformations between LGN neurons and S-cells of cat-striate cortex.
    Bullier J; Mustari MJ; Henry GH
    J Neurophysiol; 1982 Mar; 47(3):417-38. PubMed ID: 7069451
    [No Abstract]   [Full Text] [Related]  

  • 6. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models.
    Suder K; Funke K; Zhao Y; Kerscher N; Wennekers T; Wörgötter F
    Exp Brain Res; 2002 Jun; 144(4):430-44. PubMed ID: 12037629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 20 Hz bursting beta activity in the cortico-thalamic system of visually attending cats.
    Wróbel A; Bekisz M; Kublik E; Waleszczyk W
    Acta Neurobiol Exp (Wars); 1994; 54(2):95-107. PubMed ID: 8053417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal properties of spatial frequency tuning of surround suppression in the primary visual cortex and the lateral geniculate nucleus of the cat.
    Ishikawa A; Shimegi S; Kida H; Sato H
    Eur J Neurosci; 2010 Jun; 31(11):2086-100. PubMed ID: 20604803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
    Naito T; Sadakane O; Okamoto M; Sato H
    Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization of visual responses between the cortex, lateral geniculate nucleus, and retina in the anesthetized cat.
    Castelo-Branco M; Neuenschwander S; Singer W
    J Neurosci; 1998 Aug; 18(16):6395-410. PubMed ID: 9698331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal properties of surround suppression in cat primary visual cortex.
    Durand S; Freeman TC; Carandini M
    Vis Neurosci; 2007; 24(5):679-90. PubMed ID: 17686200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat.
    Dubin MW; Cleland BG
    J Neurophysiol; 1977 Mar; 40(2):410-27. PubMed ID: 191574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual Receptive Field Properties of Neurons in the Mouse Lateral Geniculate Nucleus.
    Tang J; Ardila Jimenez SC; Chakraborty S; Schultz SR
    PLoS One; 2016; 11(1):e0146017. PubMed ID: 26741374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfer characteristics of X LGN neurons in cats reared with early discordant binocular vision.
    Cheng H; Chino YM; Smith EL; Hamamoto J; Yoshida K
    J Neurophysiol; 1995 Dec; 74(6):2558-72. PubMed ID: 8747214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial frequency analysis in the visual system.
    Shapley R; Lennie P
    Annu Rev Neurosci; 1985; 8():547-83. PubMed ID: 3920946
    [No Abstract]   [Full Text] [Related]  

  • 16. The influence of the visual cortex on the spatiotemporal response properties of lateral geniculate nucleus cells.
    Marrocco RT; McClurkin JW; Alkire MT
    Brain Res; 1996 Oct; 737(1-2):110-8. PubMed ID: 8930357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlates of motor planning and postsaccadic fixation in the macaque monkey lateral geniculate nucleus.
    Royal DW; Sáry G; Schall JD; Casagrande VA
    Exp Brain Res; 2006 Jan; 168(1-2):62-75. PubMed ID: 16151777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of saccades on the activity of neurons in the cat lateral geniculate nucleus.
    Lee D; Malpeli JG
    J Neurophysiol; 1998 Feb; 79(2):922-36. PubMed ID: 9463453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring spike trains from local field potentials.
    Rasch MJ; Gretton A; Murayama Y; Maass W; Logothetis NK
    J Neurophysiol; 2008 Mar; 99(3):1461-76. PubMed ID: 18160425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corticofugal feedback improves the timing of retino-geniculate signal transmission.
    Funke K; Nelle E; Li B; Wörgötter F
    Neuroreport; 1996 Sep; 7(13):2130-4. PubMed ID: 8930973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.