BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 10619650)

  • 21. Effects of luminance on dynamic random-dot correlogram evoked visual potentials.
    Markó K; Mikó-Baráth E; Kiss HJ; Török B; Jandó G
    Perception; 2012; 41(6):648-60. PubMed ID: 23094455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of stimulus localisation on motion-onset VEP.
    Kremlácek J; Kuba M; Chlubnová J; Kubová Z
    Vision Res; 2004 Dec; 44(26):2989-3000. PubMed ID: 15474572
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and characteristics of a steady-state visually-evoked potential in humans related to the motion of a stimulus.
    Snowden RJ; Ullrich D; Bach M
    Vision Res; 1995 May; 35(10):1365-73. PubMed ID: 7645265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perceptual relearning of complex visual motion after V1 damage in humans.
    Huxlin KR; Martin T; Kelly K; Riley M; Friedman DI; Burgin WS; Hayhoe M
    J Neurosci; 2009 Apr; 29(13):3981-91. PubMed ID: 19339594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binocularity in the little owl, Athene noctua. II. Properties of visually evoked potentials from the Wulst in response to monocular and binocular stimulation with sine wave gratings.
    Porciatti V; Fontanesi G; Raffaelli A; Bagnoli P
    Brain Behav Evol; 1990; 35(1):40-8. PubMed ID: 2340414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visually evoked potentials evoked by moving unidimensional noise stimuli: effects of contrast, spatial frequency, active electrode location, reference electrode location, and stimulus type.
    Odom JV; De Smedt E; Van Malderen L; Spileers W
    Doc Ophthalmol; 1998-1999; 95(3-4):315-33. PubMed ID: 10532413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perception of self-motion from peripheral optokinetic stimulation suppresses visual evoked responses to central stimuli.
    Thilo KV; Kleinschmidt A; Gresty MA
    J Neurophysiol; 2003 Aug; 90(2):723-30. PubMed ID: 12904491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amplitude of the transient visual evoked potential (tVEP) as a function of achromatic and chromatic contrast: contribution of different visual pathways.
    Souza GS; Gomes BD; Lacerda EM; Saito CA; da Silva Filho M; Silveira LC
    Vis Neurosci; 2008; 25(3):317-25. PubMed ID: 18321403
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential changes in color and motion-onset visual evoked potentials from both eyes in early- and late-onset strabismic amblyopia.
    Davis AR; Sloper JJ; Neveu MM; Hogg CR; Morgan MJ; Holder GE
    Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4418-26. PubMed ID: 18539945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decreased amplitude of steady state pattern visually evoked cortical potentials in multiple sclerosis.
    Fujimoto N; Adachi-Usami E
    Acta Ophthalmol Scand; 1998 Oct; 76(5):625-6. PubMed ID: 9826055
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Abnormal waveform of the human pattern VEP: contribution from gamma oscillatory components.
    Sannita WG; Carozzo S; Fioretto M; Garbarino S; Martinoli C
    Invest Ophthalmol Vis Sci; 2007 Oct; 48(10):4534-41. PubMed ID: 17898275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parameters affecting conscious versus unconscious visual discrimination with damage to the visual cortex (V1).
    Weiskrantz L; Barbur JL; Sahraie A
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):6122-6. PubMed ID: 7597090
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of neuronal selectivity for stimulus speed, length, and contrast in the prestriate visual cortical areas V4 and MT of the macaque monkey.
    Cheng K; Hasegawa T; Saleem KS; Tanaka K
    J Neurophysiol; 1994 Jun; 71(6):2269-80. PubMed ID: 7931516
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visual half-field contrast sensitivity in children with dyslexia.
    Hollants-Gilhuijs M; Spekreijse F; Gijsberti-Hodenpijl M; Karten Y; Spekreijse H
    Doc Ophthalmol; 1998-1999; 96(4):293-303. PubMed ID: 10855805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Motion-onset visual evoked potentials improve the diagnosis of glaucoma.
    Kubová Z; Kuba M; Hrochová J; Svĕrák J
    Doc Ophthalmol; 1996-1997; 92(3):211-21. PubMed ID: 9181348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cortical processing of global form, motion and biological motion under low light levels.
    Burton E; Wattam-Bell J; Rubin GS; Atkinson J; Braddick O; Nardini M
    Vision Res; 2016 Apr; 121():39-49. PubMed ID: 26878697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural correlates for task-relevant facilitation of visual inputs during visually-guided hand movements.
    Lebar N; Bernier PM; Guillaume A; Mouchnino L; Blouin J
    Neuroimage; 2015 Nov; 121():39-50. PubMed ID: 26191651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cortical configuration by stimulus onset visual evoked potentials (SO-VEPs) predicts performance on a motion direction discrimination task.
    Zalar B; Martin T; Kavcic V
    Int J Psychophysiol; 2015 Jun; 96(3):125-33. PubMed ID: 25889693
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impaired visual processing of contralesional stimuli in neglect patients: a visual-evoked potential study.
    Di Russo F; Aprile T; Spitoni G; Spinelli D
    Brain; 2008 Mar; 131(Pt 3):842-54. PubMed ID: 18024488
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Asymmetric responses in cortical visually evoked potentials to motion are not derived from eye movements.
    Wilson JR; Noyd WW; Aiyer AD; Norcia AM; Mustari MJ; Boothe RG
    Invest Ophthalmol Vis Sci; 1999 Sep; 40(10):2435-9. PubMed ID: 10476815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.