These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 10620284)

  • 1. Acceleration of P/C-type inactivation in voltage-gated K(+) channels by methionine oxidation.
    Chen J; Avdonin V; Ciorba MA; Heinemann SH; Hoshi T
    Biophys J; 2000 Jan; 78(1):174-87. PubMed ID: 10620284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of an engineered pore cysteine locks a voltage-gated K+ channel in a nonconducting state.
    Zhang HJ; Liu Y; Zühlke RD; Joho RH
    Biophys J; 1996 Dec; 71(6):3083-90. PubMed ID: 8968579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residues in a jellyfish shaker-like channel involved in modulation by external potassium.
    Grigoriev NG; Spafford JD; Spencer AN
    J Neurophysiol; 1999 Oct; 82(4):1740-7. PubMed ID: 10515963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of maurotoxin action on Shaker potassium channels.
    Avdonin V; Nolan B; Sabatier JM; De Waard M; Hoshi T
    Biophys J; 2000 Aug; 79(2):776-87. PubMed ID: 10920011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of jellyfish potassium channels by external potassium ions.
    Grigoriev NG; Spafford JD; Spencer AN
    J Neurophysiol; 1999 Oct; 82(4):1728-39. PubMed ID: 10515962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S3b amino acid residues do not shuttle across the bilayer in voltage-dependent Shaker K+ channels.
    Gonzalez C; Morera FJ; Rosenmann E; Alvarez O; Latorre R
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5020-5. PubMed ID: 15774578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of voltage-dependent K+ channels by methionine oxidation: effect of nitric oxide and vitamin C.
    Ciorba MA; Heinemann SH; Weissbach H; Brot N; Hoshi T
    FEBS Lett; 1999 Jan; 442(1):48-52. PubMed ID: 9923602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. External barium influences the gating charge movement of Shaker potassium channels.
    Hurst RS; Roux MJ; Toro L; Stefani E
    Biophys J; 1997 Jan; 72(1):77-84. PubMed ID: 8994594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The S4-S5 linker couples voltage sensing and activation of pacemaker channels.
    Chen J; Mitcheson JS; Tristani-Firouzi M; Lin M; Sanguinetti MC
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11277-82. PubMed ID: 11553787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The N-terminus of the K channel KAT1 controls its voltage-dependent gating by altering the membrane electric field.
    Marten I; Hoshi T
    Biophys J; 1998 Jun; 74(6):2953-62. PubMed ID: 9635749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that the S6 segment of the Shaker voltage-gated K+ channel comprises part of the pore.
    Lopez GA; Jan YN; Jan LY
    Nature; 1994 Jan; 367(6459):179-82. PubMed ID: 8114915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gating kinetics of Shaker K+ channels are differentially modified by general anesthetics.
    Correa AM
    Am J Physiol; 1998 Oct; 275(4):C1009-21. PubMed ID: 9755054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stretch-activation and stretch-inactivation of Shaker-IR, a voltage-gated K+ channel.
    Gu CX; Juranka PF; Morris CE
    Biophys J; 2001 Jun; 80(6):2678-93. PubMed ID: 11371444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sh and eag K(+) channel subunit interaction in frog oocytes depends on level and time of expression.
    Chen ML; Hoshi T; Wu CF
    Biophys J; 2000 Sep; 79(3):1358-68. PubMed ID: 10968998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The binding of kappa-Conotoxin PVIIA and fast C-type inactivation of Shaker K+ channels are mutually exclusive.
    Koch ED; Olivera BM; Terlau H; Conti F
    Biophys J; 2004 Jan; 86(1 Pt 1):191-209. PubMed ID: 14695262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A direct demonstration of closed-state inactivation of K+ channels at low pH.
    Claydon TW; Vaid M; Rezazadeh S; Kwan DC; Kehl SJ; Fedida D
    J Gen Physiol; 2007 May; 129(5):437-55. PubMed ID: 17470663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-dependent gating of ROMK (Kir1.1) channels involves conformational changes in both N and C termini.
    Schulte U; Hahn H; Wiesinger H; Ruppersberg JP; Fakler B
    J Biol Chem; 1998 Dec; 273(51):34575-9. PubMed ID: 9852128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K+ channel inactivation mediated by the concerted action of the cytoplasmic N- and C-terminal domains.
    Jerng HH; Covarrubias M
    Biophys J; 1997 Jan; 72(1):163-74. PubMed ID: 8994601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of density and gating of delayed-rectifier potassium channels on resting membrane potential and its fluctuations.
    Marom S; Salman H; Lyakhov V; Braun E
    J Membr Biol; 1996 Dec; 154(3):267-74. PubMed ID: 8952956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intersubunit interaction between amino- and carboxyl-terminal cysteine residues in tetrameric shaker K+ channels.
    Schulteis CT; Nagaya N; Papazian DM
    Biochemistry; 1996 Sep; 35(37):12133-40. PubMed ID: 8810920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.