These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
541 related articles for article (PubMed ID: 10620289)
1. A differential scanning calorimetry study of phosphocholines mixed with paclitaxel and its bromoacylated taxanes. Ali S; Minchey S; Janoff A; Mayhew E Biophys J; 2000 Jan; 78(1):246-56. PubMed ID: 10620289 [TBL] [Abstract][Full Text] [Related]
2. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. Bagatolli LA; Gratton E Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969 [TBL] [Abstract][Full Text] [Related]
3. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related]
4. Hydrolyzable hydrophobic taxanes: synthesis and anti-cancer activities. Ali S; Ahmad I; Peters A; Masters G; Minchey S; Janoff A; Mayhew E Anticancer Drugs; 2001 Feb; 12(2):117-28. PubMed ID: 11261884 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamics of interaction of octyl glucoside with phosphatidylcholine vesicles: partitioning and solubilization as studied by high sensitivity titration calorimetry. Keller M; Kerth A; Blume A Biochim Biophys Acta; 1997 Jun; 1326(2):178-92. PubMed ID: 9218549 [TBL] [Abstract][Full Text] [Related]
6. Comparative differential scanning calorimetric and FTIR and 31P-NMR spectroscopic studies of the effects of cholesterol and androstenol on the thermotropic phase behavior and organization of phosphatidylcholine bilayers. McMullen TP; Lewis RN; McElhaney RN Biophys J; 1994 Mar; 66(3 Pt 1):741-52. PubMed ID: 8011906 [TBL] [Abstract][Full Text] [Related]
7. Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model biomembranes. Zhao L; Feng SS J Colloid Interface Sci; 2004 Jun; 274(1):55-68. PubMed ID: 15120278 [TBL] [Abstract][Full Text] [Related]
8. A calorimetry and deuterium NMR study of mixed model membranes of 1-palmitoyl-2-oleylphosphatidylcholine and saturated phosphatidylcholines. Curatolo W; Sears B; Neuringer LJ Biochim Biophys Acta; 1985 Jul; 817(2):261-70. PubMed ID: 4016105 [TBL] [Abstract][Full Text] [Related]
9. Effects of lipid chain unsaturation and headgroup type on molecular interactions between paclitaxel and phospholipid within model biomembrane. Zhao L; Feng SS J Colloid Interface Sci; 2005 May; 285(1):326-35. PubMed ID: 15797430 [TBL] [Abstract][Full Text] [Related]
10. New aspects of the interaction of cholesterol with dipalmitoylphosphatidylcholine bilayers as revealed by high-sensitivity differential scanning calorimetry. McMullen TP; McElhaney RN Biochim Biophys Acta; 1995 Mar; 1234(1):90-8. PubMed ID: 7880863 [TBL] [Abstract][Full Text] [Related]
11. The effect of side-chain analogues of cholesterol on the thermotropic phase behavior of 1-stearoyl-2-oleoylphosphatidylcholine bilayers: a differential scanning calorimetric study. Vilchèze C; McMullen TP; McElhaney RN; Bittman R Biochim Biophys Acta; 1996 Mar; 1279(2):235-42. PubMed ID: 8603092 [TBL] [Abstract][Full Text] [Related]
12. Ether phosphatidylcholines: comparison of miscibility with ester phosphatidylcholines and sphingomyelin, vesicle fusion, and association with apolipoprotein A-I. McKeone BJ; Pownall HJ; Massey JB Biochemistry; 1986 Nov; 25(23):7711-6. PubMed ID: 3099835 [TBL] [Abstract][Full Text] [Related]
13. Phospholipase A(2) activity towards vesicles of DPPC and DMPC-DSPC containing small amounts of SMPC. Høyrup P; Mouritsen OG; Jørgensen K Biochim Biophys Acta; 2001 Dec; 1515(2):133-43. PubMed ID: 11718669 [TBL] [Abstract][Full Text] [Related]
14. The effects of bilirubin on the thermal properties of phosphatidylcholine bilayers. Ali S; Zakim D Biophys J; 1993 Jul; 65(1):101-5. PubMed ID: 8369418 [TBL] [Abstract][Full Text] [Related]
15. A calorimetric and spectroscopic comparison of the effects of lathosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Biochemistry; 2011 Nov; 50(46):9982-97. PubMed ID: 21951051 [TBL] [Abstract][Full Text] [Related]
16. Miscibility of Sphingomyelins and Phosphatidylcholines in Unsaturated Phosphatidylcholine Bilayers. Kullberg A; Ekholm OO; Slotte JP Biophys J; 2015 Nov; 109(9):1907-16. PubMed ID: 26536267 [TBL] [Abstract][Full Text] [Related]
17. A region-matched hydrophobic interaction between melittin and dimyristoylphosphatidylcholine in a ternary mixture of phosphatidylcholines. Ohki K Biochem Biophys Res Commun; 1989 Oct; 164(2):850-6. PubMed ID: 2818591 [TBL] [Abstract][Full Text] [Related]
18. Interaction of prenylated chalcones and flavanones from common hop with phosphatidylcholine model membranes. Wesołowska O; Gąsiorowska J; Petrus J; Czarnik-Matusewicz B; Michalak K Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):173-84. PubMed ID: 24060562 [TBL] [Abstract][Full Text] [Related]
19. Partition of dopamine antagonists into synthetic lipid bilayers: the effect of membrane structure and composition. Sarmento AB; de Lima MC; Oliveira CR J Pharm Pharmacol; 1993 Jul; 45(7):601-5. PubMed ID: 8105052 [TBL] [Abstract][Full Text] [Related]
20. A calorimetric study of binary mixtures of dihydrosphingomyelin and sterols, sphingomyelin, or phosphatidylcholine. Nyholm TK; Nylund M; Slotte JP Biophys J; 2003 May; 84(5):3138-46. PubMed ID: 12719243 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]