BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 10620391)

  • 1. IBMX, taurine and 9-cis retinoic acid all act to accelerate rhodopsin expression in postmitotic cells.
    Wallace VA; Jensen AM
    Exp Eye Res; 1999 Dec; 69(6):617-27. PubMed ID: 10620391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinoic acid produces rod photoreceptor selective apoptosis in developing mammalian retina.
    Söderpalm AK; Fox DA; Karlsson JO; van Veen T
    Invest Ophthalmol Vis Sci; 2000 Mar; 41(3):937-47. PubMed ID: 10711716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic AMP-dependent activation of rhodopsin gene transcription in cultured retinal precursor cells of chicken embryo.
    Voisin P; Bernard M
    J Neurochem; 2009 Jul; 110(1):318-27. PubMed ID: 19457115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interleukin-4 blocks proliferation of retinal progenitor cells and increases rod photoreceptor differentiation through distinct signaling pathways.
    da Silva AG; Campello-Costa P; Linden R; Sholl-Franco A
    J Neuroimmunol; 2008 May; 196(1-2):82-93. PubMed ID: 18378323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Downregulation of STAT3 activation is required for presumptive rod photoreceptor cells to differentiate in the postnatal retina.
    Ozawa Y; Nakao K; Shimazaki T; Takeda J; Akira S; Ishihara K; Hirano T; Oguchi Y; Okano H
    Mol Cell Neurosci; 2004 Jun; 26(2):258-70. PubMed ID: 15207851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green cone opsin and rhodopsin regulation by CNTF and staurosporine in cultured chick photoreceptors.
    Xie HQ; Adler R
    Invest Ophthalmol Vis Sci; 2000 Dec; 41(13):4317-23. PubMed ID: 11095633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD73, a novel cell surface antigen that characterizes retinal photoreceptor precursor cells.
    Koso H; Minami C; Tabata Y; Inoue M; Sasaki E; Satoh S; Watanabe S
    Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5411-8. PubMed ID: 19515998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Timing and location of rhodopsin expression in newly born rod photoreceptors in the adult teleost retina.
    Henderson RG; Fernald RD
    Brain Res Dev Brain Res; 2004 Jul; 151(1-2):193-7. PubMed ID: 15246705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of cytokine signaling components in developing rat retina correlates with transient inhibition of rod differentiation by CNTF.
    Hertle D; Schleichert M; Steup A; Kirsch M; Hofmann HD
    Cell Tissue Res; 2008 Oct; 334(1):7-16. PubMed ID: 18665395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does recombinant adeno-associated virus-vectored proximal region of mouse rhodopsin promoter support only rod-type specific expression in vivo?
    Glushakova LG; Timmers AM; Issa TM; Cortez NG; Pang J; Teusner JT; Hauswirth WW
    Mol Vis; 2006 Apr; 12():298-309. PubMed ID: 16617297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GDNF stimulates rod photoreceptors and dopaminergic amacrine cells in chicken retinal reaggregates.
    Volpert KN; Rothermel A; Layer PG
    Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5306-14. PubMed ID: 17962487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IGF-1 produced by cone photoreceptors regulates rod progenitor proliferation in the teleost retina.
    Zygar CA; Colbert S; Yang D; Fernald RD
    Brain Res Dev Brain Res; 2005 Jan; 154(1):91-100. PubMed ID: 15617759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoreceptor differentiation and integration of retinal progenitor cells transplanted into transgenic rats.
    Qiu G; Seiler MJ; Mui C; Arai S; Aramant RB; de Juan E; Sadda S
    Exp Eye Res; 2005 Apr; 80(4):515-25. PubMed ID: 15781279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Placenta-derived multipotent cells differentiate into neuronal and glial cells in vitro.
    Yen BL; Chien CC; Chen YC; Chen JT; Huang JS; Lee FK; Huang HI
    Tissue Eng Part A; 2008 Jan; 14(1):9-17. PubMed ID: 18333820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ciliary neurotrophic factor as a transient negative regulator of rod development in rat retina.
    Schulz-Key S; Hofmann HD; Beisenherz-Huss C; Barbisch C; Kirsch M
    Invest Ophthalmol Vis Sci; 2002 Sep; 43(9):3099-108. PubMed ID: 12202535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinal morphology and visual pigment levels in 6- and 12-month-old rhesus monkeys fed a taurine-free human infant formula.
    Imaki H; Jacobson SG; Kemp CM; Knighton RW; Neuringer M; Sturman J
    J Neurosci Res; 1993 Oct; 36(3):290-304. PubMed ID: 8271309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Experimental studies of effects of retinoic acid on the proliferation of retinal cells].
    Tang S; Qiu G; Liu Z; Li J; Lin S
    Zhonghua Yan Ke Za Zhi; 2002 Feb; 38(2):112-4. PubMed ID: 11955313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The CNTF/LIF signaling pathway regulates developmental programmed cell death and differentiation of rod precursor cells in the mouse retina in vivo.
    Elliott J; Cayouette M; Gravel C
    Dev Biol; 2006 Dec; 300(2):583-98. PubMed ID: 17054938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activin A promotes progenitor differentiation into photoreceptors in rodent retina.
    Davis AA; Matzuk MM; Reh TA
    Mol Cell Neurosci; 2000 Jan; 15(1):11-21. PubMed ID: 10662502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A combination of CNTF and BDNF rescues rd photoreceptors but changes rod differentiation in the presence of RPE in retinal explants.
    Caffé AR; Söderpalm AK; Holmqvist I; van Veen T
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):275-82. PubMed ID: 11133879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.