These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
429 related articles for article (PubMed ID: 10620409)
1. Two genetically distinct lineages of the sika deer, Cervus nippon, in Japanese islands: comparison of mitochondrial D-loop region sequences. Nagata J; Masuda R; Tamate HB; Hamasaki Si; Ochiai K; Asada M; Tatsuzawa S; Suda K; Tado H; Yoshida MC Mol Phylogenet Evol; 1999 Dec; 13(3):511-9. PubMed ID: 10620409 [TBL] [Abstract][Full Text] [Related]
2. A mitochondrial control region and cytochrome b phylogeny of sika deer (Cervus nippon) and report of tandem repeats in the control region. Cook CE; Wang Y; Sensabaugh G Mol Phylogenet Evol; 1999 Jun; 12(1):47-56. PubMed ID: 10222160 [TBL] [Abstract][Full Text] [Related]
3. Phylogenetic relationships among european red deer, wapiti, and sika deer inferred from mitochondrial DNA sequences. Kuwayama R; Ozawa T Mol Phylogenet Evol; 2000 Apr; 15(1):115-23. PubMed ID: 10764539 [TBL] [Abstract][Full Text] [Related]
4. Bottleneck effects on the sika deer Cervus nippon population in Hokkaido, revealed by ancient DNA analysis. Nabata D; Masuda R; Takahashi O; Nagata J Zoolog Sci; 2004 Apr; 21(4):473-81. PubMed ID: 15118235 [TBL] [Abstract][Full Text] [Related]
5. A phylogenetic comparison of red deer and wapiti using mitochondrial DNA. Polziehn RO; Strobeck C Mol Phylogenet Evol; 2002 Mar; 22(3):342-56. PubMed ID: 11884159 [TBL] [Abstract][Full Text] [Related]
6. An examination of the origin and evolution of additional tandem repeats in the mitochondrial DNA control region of Japanese sika deer (Cervus Nippon). Ba H; Wu L; Liu Z; Li C Mitochondrial DNA A DNA Mapp Seq Anal; 2016; 27(1):276-81. PubMed ID: 24621225 [TBL] [Abstract][Full Text] [Related]
7. Genetic variation and population structure of the Japanese sika deer (Cervus nippon) in Hokkaido Island, based on mitochondrial D-loop sequences. Nagata J; Masuda R; Kaji K; Kaneko M; Yoshida MC Mol Ecol; 1998 Jul; 7(7):871-7. PubMed ID: 9691488 [TBL] [Abstract][Full Text] [Related]
8. Classification and phylogeny of sika deer (Cervus nippon) subspecies based on the mitochondrial control region DNA sequence using an extended sample set. Ba H; Yang F; Xing X; Li C Mitochondrial DNA; 2015 Jun; 26(3):373-9. PubMed ID: 24063645 [TBL] [Abstract][Full Text] [Related]
9. Mitochondrial DNA polymorphism in subspecies of the Japanese Sika deer, Cervus nippon. Tamate HB; Tsuchiya T J Hered; 1995; 86(3):211-5. PubMed ID: 7608513 [TBL] [Abstract][Full Text] [Related]
10. Phylogenetic analysis of Theileria sp. from sika deer, Cervus nippon, in Japan. Inokuma H; Tsuji M; Kim SJ; Fujimoto T; Nagata M; Hosoi E; Arai S; Ishihara C; Okuda M Vet Parasitol; 2004 Apr; 120(4):339-45. PubMed ID: 15063944 [TBL] [Abstract][Full Text] [Related]
11. Phylogeny of wapiti, red deer, sika deer, and other North American cervids as determined from mitochondrial DNA. Polziehn RO; Strobeck C Mol Phylogenet Evol; 1998 Oct; 10(2):249-58. PubMed ID: 9878235 [TBL] [Abstract][Full Text] [Related]
12. Genetic variation and population structure of the Japanese sika deer (Cervus nippon) in the Tohoku District based on mitochondrial D-loop sequences. Takiguchi H; Tanaka K; Ono K; Hoshi A; Minami M; Yamauchi K; Takatsuki S Zoolog Sci; 2012 Jul; 29(7):433-6. PubMed ID: 22775251 [TBL] [Abstract][Full Text] [Related]
13. Intraspecific variation in the mitochondrial genome among local populations of Medaka Oryzias latipes. Hirayama M; Mukai T; Miya M; Murata Y; Sekiya Y; Yamashita T; Nishida M; Watabe S; Oda S; Mitani H Gene; 2010 Jun; 457(1-2):13-24. PubMed ID: 20193748 [TBL] [Abstract][Full Text] [Related]
14. Dybowski's sika deer (Cervus nippon hortulorum): genetic divergence between natural primorian and introduced Czech populations. Krojerová-Prokesová J; Baranceková M; Voloshina I; Myslenkov A; Lamka J; Koubek P J Hered; 2013; 104(3):312-26. PubMed ID: 23454911 [TBL] [Abstract][Full Text] [Related]
15. Application of mitochondrial DNA sequence analysis in the forensic identification of Chinese sika deer subspecies. Wu H; Wan QH; Fang SG; Zhang SY Forensic Sci Int; 2005 Mar; 148(2-3):101-5. PubMed ID: 15639603 [TBL] [Abstract][Full Text] [Related]
16. Investigating temporal changes in hybridization and introgression in a predominantly bimodal hybridizing population of invasive sika (Cervus nippon) and native red deer (C. elaphus) on the Kintyre Peninsula, Scotland. Senn HV; Barton NH; Goodman SJ; Swanson GM; Abernethy KA; Pemberton JM Mol Ecol; 2010 Mar; 19(5):910-24. PubMed ID: 20102517 [TBL] [Abstract][Full Text] [Related]
17. Phylogeography of sika deer (Cervus nippon) inferred from mitochondrial cytochrome-b gene and microsatellite DNA. Liu H; Ju Y; Tamate H; Wang T; Xing X Gene; 2021 Mar; 772():145375. PubMed ID: 33359125 [TBL] [Abstract][Full Text] [Related]
18. Bottlenecks, drift and differentiation: the population structure and demographic history of sika deer (Cervus nippon) in the Japanese archipelago. Goodman SJ; Tamate HB; Wilson R; Nagata J; Tatsuzawa S; Swanson GM; Pemberton JM; McCullough DR Mol Ecol; 2001 Jun; 10(6):1357-70. PubMed ID: 11412360 [TBL] [Abstract][Full Text] [Related]
19. Extreme population genetic differentiation and secondary contact in the freshwater copepod Acanthodiaptomus pacificus in the Japanese Archipelago. Makino W; Tanabe AS Mol Ecol; 2009 Sep; 18(17):3699-713. PubMed ID: 19674306 [TBL] [Abstract][Full Text] [Related]