BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10620674)

  • 21. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363.
    Wegmann U; O'Connell-Motherway M; Zomer A; Buist G; Shearman C; Canchaya C; Ventura M; Goesmann A; Gasson MJ; Kuipers OP; van Sinderen D; Kok J
    J Bacteriol; 2007 Apr; 189(8):3256-70. PubMed ID: 17307855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Beta-casomorphins: analysis in cheese and susceptibility to proteolytic enzymes from Lactococcus lactis ssp. cremoris.
    Muehlenkamp MR; Warthesen JJ
    J Dairy Sci; 1996 Jan; 79(1):20-6. PubMed ID: 8675779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleotide sequence and characterization of the cell envelope proteinase plasmid in Lactococcus lactis subsp. cremoris HP.
    Christensson C; Pillidge CJ; Ward LJ; O'Toole PW
    J Appl Microbiol; 2001 Aug; 91(2):334-43. PubMed ID: 11473599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two methods for the genetic differentiation of Lactococcus lactis ssp. lactis and cremoris based on differences in the 16S rRNA gene sequence.
    Ward LJ; Brown JC; Davey GP
    FEMS Microbiol Lett; 1998 Sep; 166(1):15-20. PubMed ID: 9741080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure and expression of the Lactococcus lactis gene for phospho-beta-galactosidase (lacG) in Escherichia coli and L. lactis.
    De Vos WM; Gasson MJ
    J Gen Microbiol; 1989 Jul; 135(7):1833-46. PubMed ID: 2515252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The contribution of lactococcal starter proteinases to proteolysis in cheddar cheese.
    Law J; Fitzgerald GF; Uniacke-Lowe T; Daly C; Fox PF
    J Dairy Sci; 1993 Sep; 76(9):2455-67. PubMed ID: 8227650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determinants of enzymatic specificity in the Cys-Met-metabolism PLP-dependent enzymes family: crystal structure of cystathionine gamma-lyase from yeast and intrafamiliar structure comparison.
    Messerschmidt A; Worbs M; Steegborn C; Wahl MC; Huber R; Laber B; Clausen T
    Biol Chem; 2003 Mar; 384(3):373-86. PubMed ID: 12715888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and Functional Characterization of Cystathionine γ-lyase from
    Sagong HY; Kim B; Joo S; Kim KJ
    J Agric Food Chem; 2020 Dec; 68(51):15267-15274. PubMed ID: 33301683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel conjugative plasmids from the natural isolate Lactococcus lactis subspecies cremoris DPC3758: a repository of genes for the potential improvement of dairy starters.
    Fallico V; Ross RP; Fitzgerald GF; McAuliffe O
    J Dairy Sci; 2012 Jul; 95(7):3593-608. PubMed ID: 22720917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. L-cysteine desulfidase: an [4Fe-4S] enzyme isolated from Methanocaldococcus jannaschii that catalyzes the breakdown of L-cysteine into pyruvate, ammonia, and sulfide.
    Tchong SI; Xu H; White RH
    Biochemistry; 2005 Feb; 44(5):1659-70. PubMed ID: 15683250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and characterisation of a gene encoding aminoacylase activity from Lactococcus lactis MG1363.
    Curley P; van Sinderen D
    FEMS Microbiol Lett; 2000 Feb; 183(1):177-82. PubMed ID: 10650223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH.
    Mercade M; Cocaign-Bousquet M; Loubière P
    J Appl Microbiol; 2006 Jun; 100(6):1364-72. PubMed ID: 16696685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and functional analysis of Escherichia coli cysteine desulfhydrases.
    Awano N; Wada M; Mori H; Nakamori S; Takagi H
    Appl Environ Microbiol; 2005 Jul; 71(7):4149-52. PubMed ID: 16000837
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalytic specificity of the Lactobacillus plantarum cystathionine γ-lyase presumed by the crystallographic analysis.
    Matoba Y; Noda M; Yoshida T; Oda K; Ezumi Y; Yasutake C; Izuhara-Kihara H; Danshiitsoodol N; Kumagai T; Sugiyama M
    Sci Rep; 2020 Sep; 10(1):14886. PubMed ID: 32913258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inactivation of the glutamate decarboxylase gene in Lactococcus lactis subsp. cremoris.
    Nomura M; Kobayashi M; Ohmomo S; Okamoto T
    Appl Environ Microbiol; 2000 May; 66(5):2235-7. PubMed ID: 10788408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Variation in specificity of the PrtP extracellular proteinases in Lactococcus lactis and Lactobacillus paracasei subsp. paracasei.
    Nikolić M; Tolinacki M; Fira D; Golić N; Topisirović L
    Folia Microbiol (Praha); 2009; 54(3):188-94. PubMed ID: 19649733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purification and Characterization of Cystathionine (gamma)-Lyase from Lactococcus lactis subsp. cremoris SK11: Possible Role in Flavor Compound Formation during Cheese Maturation.
    Bruinenberg PG; De Roo G; Limsowtin G
    Appl Environ Microbiol; 1997 Feb; 63(2):561-6. PubMed ID: 16535512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization and kinetic analysis of enzyme-substrate recognition by three recombinant lactococcal tripeptidases.
    Mori S; Nirasawa S; Komba S; Kasumi T
    Biochim Biophys Acta; 2005 Apr; 1748(1):26-34. PubMed ID: 15752689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Only one of the two annotated Lactococcus lactis fabG genes encodes a functional beta-ketoacyl-acyl carrier protein reductase.
    Wang H; Cronan JE
    Biochemistry; 2004 Sep; 43(37):11782-9. PubMed ID: 15362862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-fusion and fusion expression of beta-galactosidase from Lactobacillus bulgaricus in Lactococcus lactis.
    Wang C; Zhang CW; Liu HC; Yu Q; Pei XF
    Biomed Environ Sci; 2008 Oct; 21(5):389-97. PubMed ID: 19133612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.