These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10620721)

  • 1. Turnover of glucose and acetate coupled to reduction of nitrate, ferric iron and sulfate and to methanogenesis in anoxic rice field soil.
    Chidthaisong A; Conrad R
    FEMS Microbiol Ecol; 2000 Jan; 31(1):73-86. PubMed ID: 10620721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pattern of non-methanogenic and methanogenic degradation of cellulose in anoxic rice field soil.
    Chidthaisong A; Conrad R
    FEMS Microbiol Ecol; 2000 Jan; 31(1):87-94. PubMed ID: 10620722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of sulfate and nitrate on acetate conversion by anaerobic microorganisms in a freshwater sediment.
    Scholten JC; Bodegom PM; Vogelaar J; Ittersum A; Hordijk K; Roelofsen W; Stams AJ
    FEMS Microbiol Ecol; 2002 Dec; 42(3):375-85. PubMed ID: 19709297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition.
    Scheid D; Stubner S; Conrad R
    FEMS Microbiol Ecol; 2004 Nov; 50(2):101-10. PubMed ID: 19712368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of methanogenic archaeal community to nitrate addition in rice field soil.
    Yuan Q; Lu Y
    Environ Microbiol Rep; 2009 Oct; 1(5):362-9. PubMed ID: 23765888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective inhibition of reactions involved in methanogenesis and fatty acid production on rice roots.
    Conrad R; Klose M
    FEMS Microbiol Ecol; 2000 Oct; 34(1):27-34. PubMed ID: 11053733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil.
    Lueders T; Friedrich MW
    Appl Environ Microbiol; 2002 May; 68(5):2484-94. PubMed ID: 11976125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron- and sulfate-reducing conditions.
    Siegert M; Cichocka D; Herrmann S; Gründger F; Feisthauer S; Richnow HH; Springael D; Krüger M
    FEMS Microbiol Lett; 2011 Feb; 315(1):6-16. PubMed ID: 21133990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of 2-bromo-ethane sulfonate, molybdate and chloroform on acetate consumption by methanogenic and sulfate-reducing populations in freshwater sediment.
    Scholten JC; Conrad R; Stams AJ
    FEMS Microbiol Ecol; 2000 Apr; 32(1):35-42. PubMed ID: 10779617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentation pattern of methanogenic degradation of rice straw in anoxic paddy soil.
    Glissmann K; Conrad R
    FEMS Microbiol Ecol; 2000 Feb; 31(2):117-126. PubMed ID: 10640665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of acetate-assimilating microorganisms under methanogenic conditions in anoxic rice field soil by comparative stable isotope probing of RNA.
    Hori T; Noll M; Igarashi Y; Friedrich MW; Conrad R
    Appl Environ Microbiol; 2007 Jan; 73(1):101-9. PubMed ID: 17071795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing.
    Hori T; Müller A; Igarashi Y; Conrad R; Friedrich MW
    ISME J; 2010 Feb; 4(2):267-78. PubMed ID: 19776769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations.
    Lovley DR; Klug MJ
    Appl Environ Microbiol; 1983 Jan; 45(1):187-92. PubMed ID: 16346164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoanaerobacteriaceae oxidize acetate in methanogenic rice field soil at 50°C.
    Liu F; Conrad R
    Environ Microbiol; 2010 Aug; 12(8):2341-54. PubMed ID: 21966924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron donor effect on nitrate reduction pathway and kinetics in a mixed methanogenic culture.
    Tugtas AE; Pavlostathis SG
    Biotechnol Bioeng; 2007 Nov; 98(4):756-63. PubMed ID: 17492695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir.
    Chen C; Shen Y; An D; Voordouw G
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of soil aggregate size on methanogenesis and archaeal community structure in anoxic rice field soil.
    Ramakrishnan B; Lueders T; Conrad R; Friedrich M
    FEMS Microbiol Ecol; 2000 Jun; 32(3):261-270. PubMed ID: 10858585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of nitrate- and sulfate-amendment on the methanogenic populations in rice root incubations.
    Scheid D; Stubner S; Conrad R
    FEMS Microbiol Ecol; 2003 Apr; 43(3):309-15. PubMed ID: 19719662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of monosaccharides and conversion of glucose to acetate in anoxic rice field soil.
    Chidthaisong A; Rosenstock B; Conrad R
    Appl Environ Microbiol; 1999 Jun; 65(6):2350-5. PubMed ID: 10347012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.