These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 10620761)

  • 1. Supercritical fluid precipitation of recombinant human immunoglobulin from aqueous solutions.
    Nesta DP; Elliott JS; Warr JP
    Biotechnol Bioeng; 2000 Feb; 67(4):457-64. PubMed ID: 10620761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying.
    Jovanović N; Bouchard A; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W
    Eur J Pharm Sci; 2006 Mar; 27(4):336-45. PubMed ID: 16338123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of supercritical fluid to preparation of powders of high-molecular weight drugs for inhalation.
    Okamoto H; Danjo K
    Adv Drug Deliv Rev; 2008 Feb; 60(3):433-46. PubMed ID: 17996326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supercritical fluid processing of proteins: lysozyme precipitation from aqueous solution.
    Moshashaée S; Bisrat M; Forbes RT; Quinn EA; Nyqvist H; York P
    J Pharm Pharmacol; 2003 Feb; 55(2):185-92. PubMed ID: 12631410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of chitosan-pDNA complex powder prepared by supercritical carbon dioxide process.
    Okamoto H; Sakakura Y; Shiraki K; Oka K; Nishida S; Todo H; Iida K; Danjo K
    Int J Pharm; 2005 Feb; 290(1-2):73-81. PubMed ID: 15664132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supercritical fluid drying of carbohydrates: selection of suitable excipients and process conditions.
    Bouchard A; Jovanović N; Hofland GW; Jiskoot W; Mendes E; Crommelin DJ; Witkamp GJ
    Eur J Pharm Biopharm; 2008 Mar; 68(3):781-94. PubMed ID: 17702554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combinational supercritical CO2 system for nanoparticle preparation of indomethacin.
    Tozuka Y; Miyazaki Y; Takeuchi H
    Int J Pharm; 2010 Feb; 386(1-2):243-8. PubMed ID: 19895877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable sugar-based protein formulations by supercritical fluid drying.
    Jovanović N; Bouchard A; Sutter M; Van Speybroeck M; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W
    Int J Pharm; 2008 Jan; 346(1-2):102-8. PubMed ID: 17659851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CO2 and fluorinated solvent-based technologies for protein microparticle precipitation from aqueous solutions.
    Sarkari M; Darrat I; Knutson BL
    Biotechnol Prog; 2003; 19(2):448-54. PubMed ID: 12675586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the spraying conditions and nozzle design on the shape and size distribution of particles obtained with supercritical fluid drying.
    Bouchard A; Jovanović N; de Boer AH; Martín A; Jiskoot W; Crommelin DJ; Hofland GW; Witkamp GJ
    Eur J Pharm Biopharm; 2008 Sep; 70(1):389-401. PubMed ID: 18534833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of insulin absorption from intratracheally administrated dry powder prepared by supercritical carbon dioxide process.
    Todo H; Iida K; Okamoto H; Danjo K
    J Pharm Sci; 2003 Dec; 92(12):2475-86. PubMed ID: 14603493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supercritical fluids processing of recombinant human growth hormone.
    Velega SP; Carlfors J
    Drug Dev Ind Pharm; 2005 Jan; 31(2):135-49. PubMed ID: 15773281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of microparticulate protein powder using a supercritical fluid antisolvent.
    Yeo SD; Lim GB; Debendetti PG; Bernstein H
    Biotechnol Bioeng; 1993 Feb; 41(3):341-6. PubMed ID: 18609558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilizer choice for rapid dissolving high potency itraconazole particles formed by evaporative precipitation into aqueous solution.
    Sinswat P; Gao X; Yacaman MJ; Williams RO; Johnston KP
    Int J Pharm; 2005 Sep; 302(1-2):113-24. PubMed ID: 16109466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size prediction of recombinant human growth hormone nanoparticles produced by supercritical fluid precipitation.
    Pyo D; Lim C; Cho D; Oh D
    Anal Bioanal Chem; 2007 Feb; 387(3):901-7. PubMed ID: 17186228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel isoelectric precipitation of proteins in a pressurized carbon dioxide-water-ethanol system.
    Qi XM; Yao SJ; Guan YX
    Biotechnol Prog; 2004; 20(4):1176-82. PubMed ID: 15296445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclodextrins micrometric powders obtained by supercritical fluid processing.
    Reverchon E; Antonacci A
    Biotechnol Bioeng; 2006 Jul; 94(4):753-61. PubMed ID: 16477660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theophylline formulation by supercritical antisolvents.
    Roy C; Vega-González A; Subra-Paternault P
    Int J Pharm; 2007 Oct; 343(1-2):79-89. PubMed ID: 17582714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability and aerodynamic behaviour of glucocorticoid particles prepared by a supercritical fluids process.
    Velaga SP; Bergh S; Carlfors J
    Eur J Pharm Sci; 2004 Mar; 21(4):501-9. PubMed ID: 14998581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryogenic liquids, nanoparticles, and microencapsulation.
    Purvis T; Vaughn JM; Rogers TL; Chen X; Overhoff KA; Sinswat P; Hu J; McConville JT; Johnston KP; Williams RO
    Int J Pharm; 2006 Oct; 324(1):43-50. PubMed ID: 16814968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.