These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1062114)

  • 41. An experimental study of inner ear injury in an animal model of eosinophilic otitis media.
    Matsubara A; Nishizawa H; Kurose A; Nakagawa T; Takahata J; Sasaki A
    Acta Otolaryngol; 2014 Mar; 134(3):227-32. PubMed ID: 24359096
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sound pressures in the basal turn of the cat cochlea.
    Nedzelnitsky V
    J Acoust Soc Am; 1980 Dec; 68(6):1676-89. PubMed ID: 7462467
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An electrophysiologic study of the guinea pig inner ear following low pressure barotrauma.
    Yamamoto Y; Ueda H; Tanabe T; Yanagita N
    Auris Nasus Larynx; 1998 Jan; 25(1):13-20. PubMed ID: 9512789
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cochlear blood flow under increased inner ear pressure.
    Nakashima T; Suzuki T; Yanagita N
    Ann Otol Rhinol Laryngol; 1991 May; 100(5 Pt 1):394-7. PubMed ID: 2024899
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Further studies on the application of the compartmentalization/airlock concept to aircraft and spacecraft.
    Fang HS; Tsai ML; Lea IT
    Aviat Space Environ Med; 1985 Dec; 56(12):1209-12. PubMed ID: 4084177
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Pressure relations between endocranial and intracochlear fluid spaces in patients with inner ear diseases].
    Gosepath K; Maurer J; Pelster H; Thews O; Mann W
    Laryngorhinootologie; 1995 Mar; 74(3):145-9. PubMed ID: 7755850
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inner ear injury caused by air intrusion to the scala vestibuli of the cochlea.
    Kobayashi T; Sakurada T; Ohyama K; Takasaka M
    Acta Otolaryngol; 1993 Nov; 113(6):725-30. PubMed ID: 8291430
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Perilymph sampling from the cochlear apex: a reliable method to obtain higher purity perilymph samples from scala tympani.
    Salt AN; Hale SA; Plonkte SK
    J Neurosci Methods; 2006 May; 153(1):121-9. PubMed ID: 16310856
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [The dynamic behavior of inner ear fluids].
    Giebel W
    Laryngol Rhinol Otol (Stuttg); 1982 Aug; 61(8):481-8. PubMed ID: 7132510
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Electrophysiological study of inner ear barotrauma in guinea pigs; comparison with scanning electron microscopic findings].
    Tsuge H; Ueda H; Kozuka M; Fujiura K; Yanagita N
    Nihon Jibiinkoka Gakkai Kaiho; 1997 Mar; 100(3):307-15. PubMed ID: 9103843
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Laser interferometry measurements of middle ear fluid and pressure effects on sound transmission.
    Gan RZ; Dai C; Wood MW
    J Acoust Soc Am; 2006 Dec; 120(6):3799-810. PubMed ID: 17225407
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cochlear potentials of the pigeon inner ear recorded with microelectrodes.
    Jorgensen FO
    Acta Physiol Scand; 1977 Aug; 100(4):393-403. PubMed ID: 906847
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of increased perilymphatic pressure on endocochlear potential.
    Nakashima T; Ito A
    Ann Otol Rhinol Laryngol; 1981; 90(3 Pt 1):264-6. PubMed ID: 7271132
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tolerance of membranous inner ear structures to pressure.
    Vokurka J
    Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove; 1989; 32(1):57-80. PubMed ID: 2799265
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of acute inner ear pressure changes on low-level distortion product otoacoustic emissions in the guinea pig.
    Valk WL; Wit HP; Albers FW
    Acta Otolaryngol; 2004 Oct; 124(8):929-36. PubMed ID: 15513529
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of air bubbles in the perilymph as a cause of sudden deafness.
    Nishioka I; Yanagihara N
    Am J Otol; 1986 Nov; 7(6):430-8. PubMed ID: 3812645
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inner-ear sound pressures near the base of the cochlea in chinchilla: further investigation.
    Ravicz ME; Rosowski JJ
    J Acoust Soc Am; 2013 Apr; 133(4):2208-23. PubMed ID: 23556590
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Time-related alteration of endolymph composition in an experimental model of endolymphatic hydrops.
    Sziklai I; Ferrary E; Horner KC; Sterkers O; Amiel C
    Laryngoscope; 1992 Apr; 102(4):431-8. PubMed ID: 1556894
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Volume-pressure properties of round and oval windows. A quantitative study on human temporal bone.
    Ivarsson A; Pedersen K
    Acta Otolaryngol; 1977; 84(1-2):38-43. PubMed ID: 302549
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Distribution of HRP in the inner ear after injection into the middle ear cavity.
    Saijo S; Kimura RS
    Acta Otolaryngol; 1984; 97(5-6):593-610. PubMed ID: 6464711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.