These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 10621937)
21. Competition of plasmid-bearing Pseudomonas putida strains catabolizing naphthalene via various pathways in chemostat culture. Filonov AE; Duetz WA; Karpov AV; Gaiazov RR; Kosheleva IA; Breure AM; Filonova IF; van Andel JG; Boronin AM Appl Microbiol Biotechnol; 1997 Oct; 48(4):493-8. PubMed ID: 9390458 [TBL] [Abstract][Full Text] [Related]
22. [Horizontal transfer of catabolic plasmids in the process of naphthalene biodegradation in model soil systems]. Akhmetov LI; Filonov AE; Puntus IF; Kosheleva IA; Nechaeva IA; Yonge DR; Petersen JN; Boronin AM Mikrobiologiia; 2008; 77(1):29-39. PubMed ID: 18365719 [TBL] [Abstract][Full Text] [Related]
23. [Stability of the NPL-1 and NPL-41 plasmids of naphthalene biodegradation in Pseudomonas putida populations in continuous culture]. Boronin AM; Filonov AE; Balakshina VV; Kulakova AN Mikrobiologiia; 1985; 54(4):610-5. PubMed ID: 4058326 [TBL] [Abstract][Full Text] [Related]
24. [Mutations of plasmid pBS286 blocking the initial stages of naphthalene oxidation induced by Tn5]. Kosheleva IA; Tsoĭ TV; Ivashina TV; Selifonov SA; Starovoĭtov II Genetika; 1988 Mar; 24(3):396-404. PubMed ID: 2837420 [TBL] [Abstract][Full Text] [Related]
25. Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. Takizawa N; Kaida N; Torigoe S; Moritani T; Sawada T; Satoh S; Kiyohara H J Bacteriol; 1994 Apr; 176(8):2444-9. PubMed ID: 8157615 [TBL] [Abstract][Full Text] [Related]
26. Structure of catechol 2,3-dioxygenase gene encoded in TOM plasmid of Pseudomonas cepacia G4. Oh JM; Kang E; Min KR; Kim CK; Kim YC; Lim JY; Lee KS; Min KH; Kim Y Biochem Biophys Res Commun; 1997 May; 234(3):578-81. PubMed ID: 9175755 [TBL] [Abstract][Full Text] [Related]
27. [Identification of the key genes of naphthalene catabolism in soil DNA]. Mavrodi DV; Kovalenko NP; Sokolov SL; Parfeniuk VG; Kosheleva IA; Boronin AM Mikrobiologiia; 2003; 72(5):672-80. PubMed ID: 14679907 [TBL] [Abstract][Full Text] [Related]
28. Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. Harayama S; Rekik M J Biol Chem; 1989 Sep; 264(26):15328-33. PubMed ID: 2670937 [TBL] [Abstract][Full Text] [Related]
29. [Cloning of Pseudomonas putida genes responsible for the primary stages of oxidation of naphthalene in Escherichia coli cells]. Boronin AM; Tsoĭ TV; Kosheleva IA; Arinbasarov MU; Adanin VM Genetika; 1989 Feb; 25(2):226-37. PubMed ID: 2661326 [TBL] [Abstract][Full Text] [Related]
30. nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism. Zhou NY; Fuenmayor SL; Williams PA J Bacteriol; 2001 Jan; 183(2):700-8. PubMed ID: 11133965 [TBL] [Abstract][Full Text] [Related]
31. Implications of the xylQ gene of TOL plasmid pWW102 for the evolution of aromatic catabolic pathways. Aemprapa S; Williams PA Microbiology (Reading); 1998 May; 144 ( Pt 5)():1387-1396. PubMed ID: 9611813 [TBL] [Abstract][Full Text] [Related]
32. Nucleotide sequence and expression of the catechol 2,3-dioxygenase-encoding gene of phenol-catabolizing Pseudomonas CF600. Bartilson M; Shingler V Gene; 1989 Dec; 85(1):233-8. PubMed ID: 2620833 [TBL] [Abstract][Full Text] [Related]
33. NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. Grimm AC; Harwood CS J Bacteriol; 1999 May; 181(10):3310-6. PubMed ID: 10322041 [TBL] [Abstract][Full Text] [Related]
34. [Regulation of the synthesis of the key enzymes for naphthalene catabolism in Pseudomonas putida and Pseudomonas fluorescens carrying the biodegradation plasmids NAH, pBS3, pBS2 and NPL-1]. Starovoĭtov II Mikrobiologiia; 1985; 54(5):755-62. PubMed ID: 3937034 [TBL] [Abstract][Full Text] [Related]
35. Isopropylbenzene catabolic pathway in Pseudomonas putida RE204: nucleotide sequence analysis of the ipb operon and neighboring DNA from pRE4. Eaton RW; Selifonova OV; Gedney RM Biodegradation; 1998; 9(2):119-32. PubMed ID: 9821257 [TBL] [Abstract][Full Text] [Related]
36. [Silent genes of the catechol oxidation meta-pathway in naphthalene biodegradation plasmids]. Boronin AM; Kulakova AN; Tsoĭ TV; Kosheleva IA; Kochetkov VV Dokl Akad Nauk SSSR; 1988; 299(1):237-40. PubMed ID: 3378500 [No Abstract] [Full Text] [Related]
37. [The construction and monitoring of genetically marked, plasmid-containing, naphthalene-degrading strains in soil]. Filonov AE; Akhmetov LI; Puntus IF; Esikova TZ; Gafarov AB; Izmalkova TIu; Sokolov SL; Kosheleva IA; Boronin AM Mikrobiologiia; 2005; 74(4):526-32. PubMed ID: 16211857 [TBL] [Abstract][Full Text] [Related]
38. Identification and expression of the cym, cmt, and tod catabolic genes from Pseudomonas putida KL47: expression of the regulatory todST genes as a factor for catabolic adaptation. Lee K; Ryu EK; Choi KS; Cho MC; Jeong JJ; Choi EN; Lee SO; Yoon DY; Hwang I; Kim CK J Microbiol; 2006 Apr; 44(2):192-9. PubMed ID: 16728956 [TBL] [Abstract][Full Text] [Related]
39. Complete sequence and genetic organization of pDTG1, the 83 kilobase naphthalene degradation plasmid from Pseudomonas putida strain NCIB 9816-4. Dennis JJ; Zylstra GJ J Mol Biol; 2004 Aug; 341(3):753-68. PubMed ID: 15288784 [TBL] [Abstract][Full Text] [Related]
40. Structure of the pcbC gene encoding 2,3-dihydroxybiphenyl dioxygenase of Pseudomonas sp. P20. Kim CK; Kim E; Chae JC; Kim Y Biochem Biophys Res Commun; 1996 Sep; 226(1):15-20. PubMed ID: 8806585 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]