BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10622426)

  • 1. The relationship between the chain length of non-ionic surfactants and their hemolytic action on human erythrocytes.
    Vinardell MP; Infante MR
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1999 Oct; 124(2):117-20. PubMed ID: 10622426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemolytic action of anionic surfactants of the diacyl lysine type.
    Vives MA; Macián M; Seguer J; Infante MR; Vinardell MP
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1997 Sep; 118(1):71-4. PubMed ID: 9366037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action of surface-active substances of biological membranes. III. Comparison of hemolytic activity of ionic and nonionic surfactants.
    Zaslavsky BY; Ossipov NN; Rogozhin SV
    Biochim Biophys Acta; 1978 Jun; 510(1):151-9. PubMed ID: 667031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary studies of the toxic effects of non-ionic surfactants derived from lysine.
    Macián M; Seguer J; Infante MR; Selve C; Vinardell MP
    Toxicology; 1996 Jan; 106(1-3):1-9. PubMed ID: 8571379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of polyoxyethylene chain length on erythrocyte hemolysis induced by poly[oxyethylene (n) nonylphenol] non-ionic surfactants.
    Galembeck E; Alonso A; Meirelles NC
    Chem Biol Interact; 1998 May; 113(2):91-103. PubMed ID: 9717511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythrocyte hemolysis and shape changes induced by new lysine-derivate surfactants.
    Vives MA; Infante MR; Garcia E; Selve C; Maugras M; Vinardell MP
    Chem Biol Interact; 1999 Mar; 118(1):1-18. PubMed ID: 10227575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solubilization of human erythrocyte membranes by non-ionic surfactants of the polyoxyethylene alkyl ethers series.
    Preté PS; Gomes K; Malheiros SV; Meirelles NC; de Paula E
    Biophys Chem; 2002 May; 97(1):45-54. PubMed ID: 12052494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of chemical modification of the surface of erythrocytes on their stability to the hemolytic action of sodium alkyl sulfates].
    Osipov NN; Zaslavskiĭ BIu; Rogozhin SV
    Biokhimiia; 1978 Sep; 43(9):1704-9. PubMed ID: 719073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of nonionic surfactants on the percutaneous absorption tenoxicam.
    Endo M; Yamamoto T; Ijuin T
    Chem Pharm Bull (Tokyo); 1996 Apr; 44(4):865-7. PubMed ID: 8681419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-destabilizing activity of pH-responsive cationic lysine-based surfactants: role of charge position and alkyl chain length.
    Nogueira DR; Mitjans M; Morán MC; Pérez L; Vinardell MP
    Amino Acids; 2012 Sep; 43(3):1203-15. PubMed ID: 22134583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cationic surfactants derived from lysine: effects of their structure and charge type on antimicrobial and hemolytic activities.
    Colomer A; Pinazo A; Manresa MA; Vinardell MP; Mitjans M; Infante MR; Pérez L
    J Med Chem; 2011 Feb; 54(4):989-1002. PubMed ID: 21229984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volume expansion of erythrocytes is not the only mechanism responsible for the protection by arginine-based surfactants against hypotonic hemolysis.
    Fait ME; Hermet M; Vazquez R; Mate S; Daza Millone MA; Vela ME; Morcelle SR; Bakas L
    Colloids Surf B Biointerfaces; 2018 Nov; 171():134-141. PubMed ID: 30025375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action of surface-active substances on biological membranes. II. Hemolytic activity of nonionic surfactants.
    Zaslavsky BY; Ossipov NN; Krivich VS; Baholdina LP; Rogozhin SV
    Biochim Biophys Acta; 1978 Feb; 507(1):1-7. PubMed ID: 623743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemolytic activity and solubilizing capacity of raffinose and melezitose fatty acid monoesters prepared by enzymatic synthesis.
    Carvalho L; Morales JC; Pérez-Victoria JM; Pérez-Victoria I
    Eur J Pharm Biopharm; 2015 May; 92():139-45. PubMed ID: 25753196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants.
    Nogueira DR; Mitjans M; Infante MR; Vinardell MP
    Acta Biomater; 2011 Jul; 7(7):2846-56. PubMed ID: 21421083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemolysis and antihemolysis induced by amino acid-based surfactants.
    Sánchez L; Martínez V; Infante MR; Mitjans M; Vinardell MP
    Toxicol Lett; 2007 Mar; 169(2):177-84. PubMed ID: 17293064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro studies of the hemolytic activity of microemulsions in human erythrocytes.
    Aparicio RM; José García-Celma M; Pilar Vinardell M; Mitjans M
    J Pharm Biomed Anal; 2005 Oct; 39(5):1063-7. PubMed ID: 16054795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phospholipid bilayer-perturbing properties underlying lysis induced by pH-sensitive cationic lysine-based surfactants in biomembranes.
    Nogueira DR; Mitjans M; Busquets MA; Pérez L; Vinardell MP
    Langmuir; 2012 Aug; 28(32):11687-98. PubMed ID: 22816661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sticholysins I and II interaction with cationic micelles promotes toxins' conformational changes and enhanced hemolytic activity.
    Lanio ME; Alvarez C; Ochoa C; Ros U; Pazos F; Martínez D; Tejuca M; Eugenio LM; Casallanovo F; Dyszy FH; Schreier S; Lissi E
    Toxicon; 2007 Nov; 50(6):731-9. PubMed ID: 17681582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of hemolysis by surfactants: effect of solution composition.
    Shalel S; Streichman S; Marmur A
    J Colloid Interface Sci; 2002 Aug; 252(1):66-76. PubMed ID: 16290763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.