BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 10622732)

  • 1. Prooxidant toxicity of polyphenolic antioxidants to HL-60 cells: description of quantitative structure-activity relationships.
    Sergediene E; Jönsson K; Szymusiak H; Tyrakowska B; Rietjens IM; Cenas N
    FEBS Lett; 1999 Dec; 462(3):392-6. PubMed ID: 10622732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prooxidant character of flavonoid cytotoxicity: structure-activity relationships.
    Dickancaité E; Nemeikaitè A; Kalvelytè A; Cènas N
    Biochem Mol Biol Int; 1998 Aug; 45(5):923-30. PubMed ID: 9739457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-activity relationships in prooxidant cytotoxicity of polyphenols: role of potential of phenoxyl radical/phenol redox couple.
    Nemeikaite-Ceniene A; Imbrasaite A; Sergediene E; Cenas N
    Arch Biochem Biophys; 2005 Sep; 441(2):182-90. PubMed ID: 16111645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative quantitative structure toxicity relationships for flavonoids evaluated in isolated rat hepatocytes and HeLa tumor cells.
    Moridani MY; Galati G; O'Brien PJ
    Chem Biol Interact; 2002 Mar; 139(3):251-64. PubMed ID: 11879815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of phthalocyanine-sensitized photohemolysis of human erythrocytes by polyphenolic antioxidants: description of quantitative structure-activity relationships.
    Maroziene A; Kliukiene R; Sarlauskas J; Cenas N
    Cancer Lett; 2000 Aug; 157(1):39-44. PubMed ID: 10893440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of single-electron oxidation potential and lipophilicity in the antiplasmodial in vitro activity of polyphenols: comparison to mammalian cells.
    Grellier P; Nemeikaite-Ceniene A; Sarlauskas J; Cenas N
    Z Naturforsch C J Biosci; 2008; 63(5-6):445-50. PubMed ID: 18669034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between mammalian cell cytotoxicity of flavonoids and the redox potential of phenoxyl radical/phenol couple.
    Marozienė A; Nemeikaitė-Čėnienė A; Vidžiūnaitė R; Čėnas N
    Acta Biochim Pol; 2012; 59(2):299-305. PubMed ID: 22696302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant and cytotoxic properties of lyophilized beer extracts on HL-60 cell line.
    Tedesco I; Nappo A; Petitto F; Iacomino G; Nazzaro F; Palumbo R; Russo GL
    Nutr Cancer; 2005; 52(1):74-83. PubMed ID: 16091007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidative and oxidative changes in the digestive gland cells of freshwater mussels Unio tumidus caused by selected phenolic compounds in the presence of H(2)O(2) or Cu(2+) ions.
    Labieniec M; Gabryelak T
    Toxicol In Vitro; 2007 Feb; 21(1):146-56. PubMed ID: 17084585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of cytotoxicity of 2- or 2,6-di-tert-butylphenols and 2-methoxyphenols in terms of inhibition rate constant and a theoretical parameter.
    Kadoma Y; Ito S; Atsumi T; Fujisawa S
    Chemosphere; 2009 Feb; 74(5):626-32. PubMed ID: 19084262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible role of radical intensity and oxidation potential for gallic acid-induced apoptosis.
    Sakagami H; Satoh K; Hatano T; Yoshida T; Okuda T
    Anticancer Res; 1997; 17(1A):377-80. PubMed ID: 9066680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radical generation, radical-scavenging activity, and cytotoxicity of eugenol-related compounds.
    Fujisawa S; Atsumi T; Satoh K; Kadoma Y; Ishihara M; Okada N; Nagasaki M; Yokoe I; Sakagami H
    In Vitr Mol Toxicol; 2000; 13(4):269-80. PubMed ID: 11319278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytotoxicity of natural hydroxyanthraquinones: role of oxidative stress.
    Nemeikaite-Ceniene A; Sergediene E; Nivinskas H; Cenas N
    Z Naturforsch C J Biosci; 2002; 57(9-10):822-7. PubMed ID: 12440719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative structure-activity relationships in enzymatic single-electron reduction of nitroaromatic explosives: implications for their cytotoxicity.
    Cenas N; Nemeikaite-Ceniene A; Sergediene E; Nivinskas H; Anusevicius Z; Sarlauskas J
    Biochim Biophys Acta; 2001 Sep; 1528(1):31-8. PubMed ID: 11514095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox properties of novel antioxidant 5,8-Dihydroxycoumarin: implications for its prooxidant cytotoxicity.
    Nemeikaite-Ceniene A; Maroziene A; Pukalskas A; Venskutonis PR; Cenas N
    Z Naturforsch C J Biosci; 2005; 60(11-12):849-54. PubMed ID: 16402544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSARs for monosubstituted phenols and the polar narcosis mechanism of toxicity.
    Schultz TW; Lin DT; Wesley SK
    Qual Assur; 1992 Feb; 1(2):132-43. PubMed ID: 1344212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity of daunorubicin and naphthoquinones to HL-60 cells: an involvement of oxidative stress.
    Dickancaite E; Cenas N; Kalvelyte A; Serapiniene N
    Biochem Mol Biol Int; 1997 Apr; 41(5):987-94. PubMed ID: 9137830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of iron with polyphenolic compounds: application to antioxidant characterization.
    Yoshino M; Murakami K
    Anal Biochem; 1998 Mar; 257(1):40-4. PubMed ID: 9512770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prooxidant and antioxidant activity of vitamin E analogues and troglitazone.
    Tafazoli S; Wright JS; O'Brien PJ
    Chem Res Toxicol; 2005 Oct; 18(10):1567-74. PubMed ID: 16533021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenolic constituents and antioxidant capacities of Crataegus monogyna (Hawthorn) callus extracts.
    Bahorun T; Aumjaud E; Ramphul H; Rycha M; Luximon-Ramma A; Trotin F; Aruoma OI
    Nahrung; 2003 Jun; 47(3):191-8. PubMed ID: 12866623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.