BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 10624528)

  • 41. Photobleaching of melanosomes from retinal pigment epithelium: II. Effects on the response of living cells to photic stress.
    Zareba M; Sarna T; Szewczyk G; Burke JM
    Photochem Photobiol; 2007; 83(4):925-30. PubMed ID: 17645665
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Orientation of actin filaments in teleost retinal pigment epithelial cells, and the effect of the lectin, Concanavalin A, on melanosome motility.
    King-Smith C; Vagnozzi RJ; Fischer NE; Gannon P; Gunnam S
    Vis Neurosci; 2014 Jan; 31(1):1-10. PubMed ID: 24801619
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antioxidant properties of melanin in retinal pigment epithelial cells.
    Wang Z; Dillon J; Gaillard ER
    Photochem Photobiol; 2006; 82(2):474-9. PubMed ID: 16613501
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Visualization of retinal pigment epithelial cells in vivo using digital high-resolution confocal scanning laser ophthalmoscopy.
    Bindewald A; Jorzik JJ; Loesch A; Schutt F; Holz FG
    Am J Ophthalmol; 2004 Mar; 137(3):556-8. PubMed ID: 15013882
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Melanosomes of retinal pigment epithelium--distribution, shape, and acid phosphatase activity.
    Kim IT; Choi JB
    Korean J Ophthalmol; 1998 Dec; 12(2):85-91. PubMed ID: 10188367
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new approach to measuring the action spectrum for singlet oxygen production by human retinal lipofuscin.
    Avalle LB; Dillon J; Tari S; Gaillard ER
    Photochem Photobiol; 2005; 81(6):1347-50. PubMed ID: 16120003
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ageing of the retinal pigment epithelium: implications for transplantation.
    Boulton M; Róanowska M; Wess T
    Graefes Arch Clin Exp Ophthalmol; 2004 Jan; 242(1):76-84. PubMed ID: 14663593
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Visualizing melanosomes, lipofuscin, and melanolipofuscin in human retinal pigment epithelium using serial block face scanning electron microscopy.
    Pollreisz A; Messinger JD; Sloan KR; Mittermueller TJ; Weinhandl AS; Benson EK; Kidd GJ; Schmidt-Erfurth U; Curcio CA
    Exp Eye Res; 2018 Jan; 166():131-139. PubMed ID: 29066281
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mosaicism of the retinal pigment epithelium: seeing the small picture.
    Burke JM; Hjelmeland LM
    Mol Interv; 2005 Aug; 5(4):241-9. PubMed ID: 16123538
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Age-related changes in the fluorescence of melanin and lipofuscin granules of the retinal pigment epithelium: a time-resolved fluorescence spectroscopy study.
    Docchio F; Boulton M; Cubeddu R; Ramponi R; Barker PD
    Photochem Photobiol; 1991 Aug; 54(2):247-53. PubMed ID: 1780361
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of retinal pigment epithelium melanin in photoinduced oxidation of ascorbate.
    Rózanowska M; Bober A; Burke JM; Sarna T
    Photochem Photobiol; 1997 Mar; 65(3):472-9. PubMed ID: 9077135
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Age-related changes in the photoreactivity of retinal lipofuscin granules: role of chloroform-insoluble components.
    Rózanowska M; Pawlak A; Rózanowski B; Skumatz C; Zareba M; Boulton ME; Burke JM; Sarna T; Simon JD
    Invest Ophthalmol Vis Sci; 2004 Apr; 45(4):1052-60. PubMed ID: 15037568
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The photochemistry of human retinal lipofuscin as studied by EPR.
    Reszka K; Eldred GE; Wang RH; Chignell C; Dillon J
    Photochem Photobiol; 1995 Dec; 62(6):1005-8. PubMed ID: 8570736
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calcium uptake, release and ryanodine binding in melanosomes from retinal pigment epithelium.
    Salceda R; Sánchez-Chávez G
    Cell Calcium; 2000 Apr; 27(4):223-9. PubMed ID: 10858668
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The pigments of the retinal pigment epithelium.
    Feeney-Burns L
    Curr Top Eye Res; 1980; 2():119-78. PubMed ID: 6807609
    [No Abstract]   [Full Text] [Related]  

  • 56. Spectroscopic and morphological studies of human retinal lipofuscin granules.
    Haralampus-Grynaviski NM; Lamb LE; Clancy CM; Skumatz C; Burke JM; Sarna T; Simon JD
    Proc Natl Acad Sci U S A; 2003 Mar; 100(6):3179-84. PubMed ID: 12612344
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Ultrastructure, Spatial Distribution, and Osmium Tetroxide Binding of Lipofuscin and Melanosomes in Aging Monkey Retinal Epithelium.
    Gouras P; Brown KR; Mattison JA; Neuringer M; Nagasaki T; Ivert L
    Curr Eye Res; 2018 Aug; 43(8):1019-1023. PubMed ID: 29641909
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Time course and development of light adaptation processes in the outer zebrafish retina.
    Hodel C; Neuhauss SC; Biehlmaier O
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Jun; 288(6):653-62. PubMed ID: 16721865
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Endogenous circadian retinomotor movements in the neon tetra (Paracheirodon innesi).
    Lythgoe JN; Shand J
    Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1203-10. PubMed ID: 6885308
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The surface oxidation potential of melanosomes measured by free electron laser-photoelectron emission microscopy.
    Garguilo J; Hong L; Edwards GS; Nemanich RJ; Simon JD
    Photochem Photobiol; 2007; 83(3):692-7. PubMed ID: 17007561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.