BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 10625062)

  • 1. Mechanisms of ischaemic damage to central white matter axons: a quantitative histological analysis using rat optic nerve.
    Garthwaite G; Brown G; Batchelor AM; Goodwin DA; Garthwaite J
    Neuroscience; 1999; 94(4):1219-30. PubMed ID: 10625062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide stimulates cGMP formation in rat optic nerve axons, providing a specific marker of axon viability.
    Garthwaite G; Goodwin DA; Garthwaite J
    Eur J Neurosci; 1999 Dec; 11(12):4367-72. PubMed ID: 10594663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide toxicity in CNS white matter: an in vitro study using rat optic nerve.
    Garthwaite G; Goodwin DA; Batchelor AM; Leeming K; Garthwaite J
    Neuroscience; 2002; 109(1):145-55. PubMed ID: 11784706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between electrophysiological effects of mexiletine and ischemic protection in central nervous system white matter.
    Stys PK; Lesiuk H
    Neuroscience; 1996 Mar; 71(1):27-36. PubMed ID: 8834390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger.
    Stys PK; Waxman SG; Ransom BR
    J Neurosci; 1992 Feb; 12(2):430-9. PubMed ID: 1311030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca(2+)-mediated injury in myelinated CNS axons.
    Waxman SG; Black JA; Ransom BR; Stys PK
    Brain Res; 1994 May; 644(2):197-204. PubMed ID: 8050031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiology of sipatrigine: a lamotrigine derivative exhibiting neuroprotective effects.
    Calabresi P; Stefani A; Marfia GA; Hainsworth AH; Centonze D; Saulle E; Spadoni F; Leach MJ; Giacomini P; Bernardi G
    Exp Neurol; 2000 Mar; 162(1):171-9. PubMed ID: 10716897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of ion channel blockade on the distribution of Na, K, Ca and other elements in oxygen-glucose deprived CA1 hippocampal neurons.
    LoPachin RM; Gaughan CL; Lehning EJ; Weber ML; Taylor CP
    Neuroscience; 2001; 103(4):971-83. PubMed ID: 11301205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel Na+/Ca2+ channel blocker, NS-7, suppresses hypoxic injury in rat cerebrocortical slices.
    Tatsumi S; Itoh Y; Ukai Y; Kimura K
    Naunyn Schmiedebergs Arch Pharmacol; 1998 Aug; 358(2):191-6. PubMed ID: 9750004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calpain-dependent neurofilament breakdown in anoxic and ischemic rat central axons.
    Stys PK; Jiang Q
    Neurosci Lett; 2002 Aug; 328(2):150-4. PubMed ID: 12133577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of injury-induced calcium entry into peripheral nerve myelinated axons: role of reverse sodium-calcium exchange.
    Lehning EJ; Doshi R; Isaksson N; Stys PK; LoPachin RM
    J Neurochem; 1996 Feb; 66(2):493-500. PubMed ID: 8592118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soluble guanylyl cyclase activator YC-1 protects white matter axons from nitric oxide toxicity and metabolic stress, probably through Na(+) channel inhibition.
    Garthwaite G; Goodwin DA; Neale S; Riddall D; Garthwaite J
    Mol Pharmacol; 2002 Jan; 61(1):97-104. PubMed ID: 11752210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of calcium and sodium fluxes in anoxic myelinated central nervous system axons.
    Stys PK; Lopachin RM
    Neuroscience; 1998 Jan; 82(1):21-32. PubMed ID: 9483500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium channel blocking activity of AM-36 and sipatrigine (BW619C89): in vitro and in vivo evidence.
    Callaway JK; Castillo-Melendez M; Giardina SF; Krstew EK; Beart PM; Jarrott B
    Neuropharmacology; 2004 Jul; 47(1):146-55. PubMed ID: 15165842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central axons preparing to myelinate are highly sensitive [corrected] to ischemic injury.
    Alix JJ; Zammit C; Riddle A; Meshul CK; Back SA; Valentino M; Fern R
    Ann Neurol; 2012 Dec; 72(6):936-51. PubMed ID: 23280842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cd(2+)-induced injury in CNS white matter.
    Fern R; Black JA; Ransom BR; Waxman SG
    J Neurophysiol; 1996 Nov; 76(5):3264-73. PubMed ID: 8930271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel dose-response studies of the voltage-dependent Na+ channel antagonist BW619C89, and the voltage-dependent Ca2+ channel antagonist nimodipine, in rat transient focal cerebral ischaemia.
    Kawaguchi K; Henshall DC; Simon RP
    Eur J Pharmacol; 1999 Jan; 364(2-3):99-105. PubMed ID: 9932711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninactivating, tetrodotoxin-sensitive Na+ conductance in rat optic nerve axons.
    Stys PK; Sontheimer H; Ransom BR; Waxman SG
    Proc Natl Acad Sci U S A; 1993 Aug; 90(15):6976-80. PubMed ID: 8394004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+-dependent sources of intra-axonal Ca2+ release in rat optic nerve during in vitro chemical ischemia.
    Nikolaeva MA; Mukherjee B; Stys PK
    J Neurosci; 2005 Oct; 25(43):9960-7. PubMed ID: 16251444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term beneficial effects of BW619C89 on neurological deficit, cognitive deficit and brain damage after middle cerebral artery occlusion in the rat.
    Smith SE; Hodges H; Sowinski P; Man CM; Leach MJ; Sinden JD; Gray JA; Meldrum BS
    Neuroscience; 1997 Apr; 77(4):1123-35. PubMed ID: 9130792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.