These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 10625149)

  • 1. Vortex shedding in steady flow through a model of an arterial stenosis and its relevance to mural platelet deposition.
    Bluestein D; Gutierrez C; Londono M; Schoephoerster RT
    Ann Biomed Eng; 1999; 27(6):763-73. PubMed ID: 10625149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition.
    Bluestein D; Niu L; Schoephoerster RT; Dewanjee MK
    J Biomech Eng; 1996 Aug; 118(3):280-6. PubMed ID: 8872248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus.
    Bluestein D; Niu L; Schoephoerster RT; Dewanjee MK
    Ann Biomed Eng; 1997; 25(2):344-56. PubMed ID: 9084839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical modeling of pulsatile turbulent flow in stenotic vessels.
    Varghese SS; Frankel SH
    J Biomech Eng; 2003 Aug; 125(4):445-60. PubMed ID: 12968569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of particle-hemodynamics in a partially occluded artery segment with implications to the initiation of microemboli and secondary stenoses.
    Buchanan JR; Kleinstreuer C
    J Biomech Eng; 1998 Aug; 120(4):446-54. PubMed ID: 10412414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental analysis of the influence of stenotic geometry on steady flow.
    Liepsch D; Singh M; Lee M
    Biorheology; 1992; 29(4):419-31. PubMed ID: 1306368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle motion within in vitro models of stenosed internal carotid and left anterior descending coronary arteries.
    Cao J; Rittgers SE
    Ann Biomed Eng; 1998; 26(2):190-9. PubMed ID: 9525760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical model of platelet deposition under flow conditions.
    Affeld K; Goubergrits L; Kertzscher U; Gadischke J; Reininger A
    Int J Artif Organs; 2004 Aug; 27(8):699-708. PubMed ID: 15478541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A scaling law for wall shear rate through an arterial stenosis.
    Siegel JM; Markou CP; Ku DN; Hanson SR
    J Biomech Eng; 1994 Nov; 116(4):446-51. PubMed ID: 7869720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of microvascular sutures on shear strain rate in realistic pulsatile flow.
    Wain RAJ; Smith DJ; Hammond DR; Whitty JPM
    Microvasc Res; 2018 Jul; 118():69-81. PubMed ID: 29522755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin(ogen) and platelets.
    Mailhac A; Badimon JJ; Fallon JT; Fernández-Ortiz A; Meyer B; Chesebro JH; Fuster V; Badimon L
    Circulation; 1994 Aug; 90(2):988-96. PubMed ID: 8044972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vortex shedding as a mechanism for free emboli formation in mechanical heart valves.
    Bluestein D; Rambod E; Gharib M
    J Biomech Eng; 2000 Apr; 122(2):125-34. PubMed ID: 10834152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of unsteady laminar flow through a tilting disk heart valve: prediction of vortex shedding.
    Huang ZJ; Merkle CL; Abdallah S; Tarbell JM
    J Biomech; 1994 Apr; 27(4):391-402. PubMed ID: 8188720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LES of additive and non-additive pulsatile flows in a model arterial stenosis.
    Molla MM; Paul MC; Roditi G
    Comput Methods Biomech Biomed Engin; 2010 Feb; 13(1):105-20. PubMed ID: 19657797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of velocity and wall shear stress inside a PTFE vascular graft model under steady flow conditions.
    Loth F; Jones SA; Giddens DP; Bassiouny HS; Glagov S; Zarins CK
    J Biomech Eng; 1997 May; 119(2):187-94. PubMed ID: 9168395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis.
    Long Q; Xu XY; Ramnarine KV; Hoskins P
    J Biomech; 2001 Oct; 34(10):1229-42. PubMed ID: 11522303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses.
    Sarifuddin ; Chakravarty S; Mandal PK; Layek GC
    J Med Eng Technol; 2008; 32(5):385-99. PubMed ID: 18821416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The accuracy of magnetic resonance phase velocity measurements in stenotic flow.
    Siegel JM; Oshinski JN; Pettigrew RI; Ku DN
    J Biomech; 1996 Dec; 29(12):1665-72. PubMed ID: 8945670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A numerical and experimental investigation of transitional pulsatile flow in a stenosed channel.
    Beratlis N; Balaras E; Parvinian B; Kiger K
    J Biomech Eng; 2005 Dec; 127(7):1147-57. PubMed ID: 16502657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological flow analysis in significant human coronary artery stenoses.
    Banerjee RK; Back LH; Back MR; Cho YI
    Biorheology; 2003; 40(4):451-76. PubMed ID: 12775911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.