These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10625150)

  • 1. A physical model describing the mechanism for formation of gas microbubbles in patients with mitral mechanical heart valves.
    Rambod E; Beizaie M; Shusser M; Milo S; Gharib M
    Ann Biomed Eng; 1999; 27(6):774-92. PubMed ID: 10625150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitral mechanical heart valves: in vitro studies of their closure, vortex and microbubble formation with possible medical implications.
    Milo S; Rambod E; Gutfinger C; Gharib M
    Eur J Cardiothorac Surg; 2003 Sep; 24(3):364-70. PubMed ID: 12965306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of vortices in growth of microbubbles at mitral mechanical heart valve closure.
    Rambod E; Beizai M; Sahn DJ; Gharib M
    Ann Biomed Eng; 2007 Jul; 35(7):1131-45. PubMed ID: 17404890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation and quantification of gas bubble formation on a mechanical heart valve.
    Lin HY; Bianccucci BA; Deutsch S; Fontaine AA; Tarbell JM
    J Biomech Eng; 2000 Aug; 122(4):304-9. PubMed ID: 11036552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbubbles and mitral valve prostheses - transesophageal echocardiographic evaluation.
    Levy DJ; Child JS; Rambod E; Gharib M; Milo S; Reisner SA
    Eur J Ultrasound; 1999 Sep; 10(1):31-40. PubMed ID: 10502637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of vortices in cavitation formation in the flow across a mechanical heart valve.
    Li CP; Lu PC; Liu JS; Lo CW; Hwang NH
    J Heart Valve Dis; 2008 Jul; 17(4):435-45. PubMed ID: 18751474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavitation versus degassing: in vitro study of the microbubble phenomenon observed during echocardiography in patients with mechanical prosthetic cardiac valves.
    Girod G; Jaussi A; Rosset C; De Werra P; Hirt F; Kappenberger L
    Echocardiography; 2002 Oct; 19(7 Pt 1):531-6. PubMed ID: 12376004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prevalence of microbubbles associated with mechanical prosthetic cardiac valves: a prospective transesophageal echocardiography study.
    Gencbay M; Turan F; Yaymaci B; Degertekin M; Basaran Y; Dindar I; Izgi A
    J Heart Valve Dis; 1998 May; 7(3):340-4. PubMed ID: 9651850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A squeeze flow phenomenon at the closing of a bileaflet mechanical heart valve prosthesis.
    Bluestein D; Einav S; Hwang NH
    J Biomech; 1994 Nov; 27(11):1369-78. PubMed ID: 7798287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bubble observation and transient pressure signals in mechanical heart valve cavitation study.
    Lijun X; Hock YJ; Hwang NH
    J Heart Valve Dis; 2003 Mar; 12(2):235-44. PubMed ID: 12701797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbubbles associated with mitral valve prostheses in pediatric patients.
    Levy D; Lawrenson J; Schulz J; Milo S; Reisner SA
    Eur J Ultrasound; 1999 Jul; 9(3):213-21. PubMed ID: 10657596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro studies of gas bubble formation by mechanical heart valves.
    Biancucci BA; Deutsch S; Geselowitz DB; Tarbell JM
    J Heart Valve Dis; 1999 Mar; 8(2):186-96. PubMed ID: 10224580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcranial high-intensity Doppler signals in patients with mechanical heart valve prostheses: their relationship with abnormal intracavitary echoes.
    Deklunder G; Lecroart JL; Savoye C; Coquet B; Houdas Y
    J Heart Valve Dis; 1996 Nov; 5(6):662-7. PubMed ID: 8953445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbubbles associated with mechanical heart valves: their relationwith serum lactic dehydrogenase levels.
    Gencbay M; Degertekin M; Basaran Y; Yaymaci B; Izgi A; Dindar I; Turan F
    Am Heart J; 1999 Mar; 137(3):463-8. PubMed ID: 10047627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Causes and formation of cavitation in mechanical heart valves.
    Graf T; Reul H; Detlefs C; Wilmes R; Rau G
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S49-64. PubMed ID: 8061870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of cavitation and the formation of stable bubbles on the Björk-Shiley Monostrut prosthetic heart valve.
    Bachmann C; Kini V; Deutsch S; Fontaine AA; Tarbell JM
    J Heart Valve Dis; 2002 Jan; 11(1):105-13. PubMed ID: 11843495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneously appearing microbubbles associated with prosthetic cardiac valves detected by transesophageal echocardiography.
    Orsinelli DA; Pasierski TJ; Pearson AC
    Am Heart J; 1994 Nov; 128(5):990-6. PubMed ID: 7942493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavitation phenomenon in monoleaflet mechanical heart valves with electrohydraulic total artificial heart.
    Lee H; Taenaka Y; Kitamura S
    Int J Artif Organs; 2004 Sep; 27(9):779-86. PubMed ID: 15521218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure recovery in bileaflet heart valve prostheses. Localized high velocities and gradients in central and side orifices with implications for Doppler-catheter gradient relation in aortic and mitral position.
    Vandervoort PM; Greenberg NL; Powell KA; Cosgrove DM; Thomas JD
    Circulation; 1995 Dec; 92(12):3464-72. PubMed ID: 8521568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A detailed fluid mechanics study of tilting disk mechanical heart valve closure and the implications to blood damage.
    Manning KB; Herbertson LH; Fontaine AA; Deutsch S
    J Biomech Eng; 2008 Aug; 130(4):041001. PubMed ID: 18601443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.