BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 10625453)

  • 1. Fluorescence assays of Cdc42 interactions with target/effector proteins.
    Nomanbhoy T; Cerione RA
    Biochemistry; 1999 Nov; 38(48):15878-84. PubMed ID: 10625453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dock and coalesce mechanism driven by hydrophobic interactions governs Cdc42 binding with its effector protein ACK.
    Tetley GJN; Mott HR; Cooley RN; Owen D
    J Biol Chem; 2017 Jul; 292(27):11361-11373. PubMed ID: 28539360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a fluorescence spectroscopic readout to characterize the interactions of Cdc42Hs with its target/effector, mPAK-3.
    Leonard DA; Satoskar RS; Wu WJ; Bagrodia S; Cerione RA; Manor D
    Biochemistry; 1997 Feb; 36(5):1173-80. PubMed ID: 9033409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the GTP-binding/GTPase cycle of Cdc42Hs using extrinsic reporter group fluorescence.
    Nomanbhoy TK; Leonard DA; Manor D; Cerione RA
    Biochemistry; 1996 Apr; 35(14):4602-8. PubMed ID: 8605211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of Cdc42 bound to the GTPase binding domain of PAK.
    Morreale A; Venkatesan M; Mott HR; Owen D; Nietlispach D; Lowe PN; Laue ED
    Nat Struct Biol; 2000 May; 7(5):384-8. PubMed ID: 10802735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity determinants on Cdc42 for binding its effector protein ACK.
    Elliot-Smith AE; Mott HR; Lowe PN; Laue ED; Owen D
    Biochemistry; 2005 Sep; 44(37):12373-83. PubMed ID: 16156650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delineation of the Cdc42/Rac-binding domain of p21-activated kinase.
    Thompson G; Owen D; Chalk PA; Lowe PN
    Biochemistry; 1998 May; 37(21):7885-91. PubMed ID: 9601050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK.
    Mott HR; Owen D; Nietlispach D; Lowe PN; Manser E; Lim L; Laue ED
    Nature; 1999 May; 399(6734):384-8. PubMed ID: 10360579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oncogenic Dbl, Cdc42, and p21-activated kinase form a ternary signaling intermediate through the minimum interactive domains.
    Wang L; Zhu K; Zheng Y
    Biochemistry; 2004 Nov; 43(46):14584-93. PubMed ID: 15544329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residues in Cdc42 that specify binding to individual CRIB effector proteins.
    Owen D; Mott HR; Laue ED; Lowe PN
    Biochemistry; 2000 Feb; 39(6):1243-50. PubMed ID: 10684602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the region in Cdc42 that confers the binding specificity to activated Cdc42-associated kinase.
    Gu Y; Lin Q; Childress C; Yang W
    J Biol Chem; 2004 Jul; 279(29):30507-13. PubMed ID: 15123659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic GTP hydrolysis is observed for a switch 1 variant of Cdc42 in the presence of a specific GTPase inhibitor.
    Morris KM; Henderson R; Suresh Kumar TK; Heyes CD; Adams PD
    Small GTPases; 2016; 7(1):1-11. PubMed ID: 26828437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CDC42-IQGAP Interactions Scrutinized: New Insights into the Binding Properties of the GAP-Related Domain.
    Mosaddeghzadeh N; Pudewell S; Bazgir F; Kazemein Jasemi NS; Krumbach OHF; Gremer L; Willbold D; Dvorsky R; Ahmadian MR
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CDC42 binds PAK4 via an extended GTPase-effector interface.
    Ha BH; Boggon TJ
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):531-536. PubMed ID: 29295922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the catalytic mechanism of GTPase-activating proteins: demonstration of the importance of switch domain stabilization in the stimulation of GTP hydrolysis.
    Fidyk NJ; Cerione RA
    Biochemistry; 2002 Dec; 41(52):15644-53. PubMed ID: 12501193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Structural Basis for Cdc42-Induced Dimerization of IQGAPs.
    LeCour L; Boyapati VK; Liu J; Li Z; Sacks DB; Worthylake DK
    Structure; 2016 Sep; 24(9):1499-508. PubMed ID: 27524202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirement of activated Cdc42-associated kinase for survival of v-Ras-transformed mammalian cells.
    Nur-E-Kamal A; Zhang A; Keenan SM; Wang XI; Seraj J; Satoh T; Meiners S; Welsh WJ
    Mol Cancer Res; 2005 May; 3(5):297-305. PubMed ID: 15886301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method to measure the interaction of Rac/Cdc42 with their binding partners using fluorescence resonance energy transfer between mutants of green fluorescent protein.
    Graham DL; Lowe PN; Chalk PA
    Anal Biochem; 2001 Sep; 296(2):208-17. PubMed ID: 11554716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and characterization of a novel Cdc42-associated tyrosine kinase, ACK-2, from bovine brain.
    Yang W; Cerione RA
    J Biol Chem; 1997 Oct; 272(40):24819-24. PubMed ID: 9312079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirement of p21-activated kinase (PAK) for Salmonella typhimurium-induced nuclear responses.
    Chen LM; Bagrodia S; Cerione RA; Galán JE
    J Exp Med; 1999 May; 189(9):1479-88. PubMed ID: 10224288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.