BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 10625458)

  • 1. Identification of the zinc ligands in cobalamin-independent methionine synthase (MetE) from Escherichia coli.
    Zhou ZS; Peariso K; Penner-Hahn JE; Matthews RG
    Biochemistry; 1999 Nov; 38(48):15915-26. PubMed ID: 10625458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cobalamin-independent methionine synthase from Escherichia coli: a zinc metalloenzyme.
    González JC; Peariso K; Penner-Hahn JE; Matthews RG
    Biochemistry; 1996 Sep; 35(38):12228-34. PubMed ID: 8823155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the zinc sites in cobalamin-independent and cobalamin-dependent methionine synthase using zinc and selenium X-ray absorption spectroscopy.
    Peariso K; Zhou ZS; Smith AE; Matthews RG; Penner-Hahn JE
    Biochemistry; 2001 Jan; 40(4):987-93. PubMed ID: 11170420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of cobalamin-independent methionine synthase complexed with zinc, homocysteine, and methyltetrahydrofolate.
    Ferrer JL; Ravanel S; Robert M; Dumas R
    J Biol Chem; 2004 Oct; 279(43):44235-8. PubMed ID: 15326182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cobalamin-dependent methionine synthase from Escherichia coli: involvement of zinc in homocysteine activation.
    Goulding CW; Matthews RG
    Biochemistry; 1997 Dec; 36(50):15749-57. PubMed ID: 9398304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of cobalamin-independent and cobalamin-dependent methionine synthases from Escherichia coli: two solutions to the same chemical problem.
    González JC; Banerjee RV; Huang S; Sumner JS; Matthews RG
    Biochemistry; 1992 Jul; 31(26):6045-56. PubMed ID: 1339288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitation of rate enhancements attained by the binding of cobalamin to methionine synthase.
    Bandarian V; Matthews RG
    Biochemistry; 2001 Apr; 40(16):5056-64. PubMed ID: 11305922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of cobalamin-independent methionine synthase (MetE) from Streptococcus mutans: a dynamic zinc-inversion model.
    Fu TM; Almqvist J; Liang YH; Li L; Huang Y; Su XD
    J Mol Biol; 2011 Sep; 412(4):688-97. PubMed ID: 21840320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cobalamin-independent methionine synthase (MetE): a face-to-face double barrel that evolved by gene duplication.
    Pejchal R; Ludwig ML
    PLoS Biol; 2005 Feb; 3(2):e31. PubMed ID: 15630480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of the C-terminal domain of methionine synthase: presenting S-adenosylmethionine for reductive methylation of B12.
    Dixon MM; Huang S; Matthews RG; Ludwig M
    Structure; 1996 Nov; 4(11):1263-75. PubMed ID: 8939751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli.
    Hondorp ER; Matthews RG
    PLoS Biol; 2004 Nov; 2(11):e336. PubMed ID: 15502870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of flavodoxin with cobalamin-dependent methionine synthase.
    Hall DA; Jordan-Starck TC; Loo RO; Ludwig ML; Matthews RG
    Biochemistry; 2000 Sep; 39(35):10711-9. PubMed ID: 10978155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis of a fungal methionine synthase with substrates and inhibitors.
    Ubhi D; Kago G; Monzingo AF; Robertus JD
    J Mol Biol; 2014 Apr; 426(8):1839-47. PubMed ID: 24524835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitamin-B12-independent methionine synthase from a higher plant (Catharanthus roseus). Molecular characterization, regulation, heterologous expression, and enzyme properties.
    Eichel J; González JC; Hotze M; Matthews RG; Schröder J
    Eur J Biochem; 1995 Jun; 230(3):1053-8. PubMed ID: 7601135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and sequence analysis of the Escherichia coli metH gene encoding cobalamin-dependent methionine synthase and isolation of a tryptic fragment containing the cobalamin-binding domain.
    Banerjee RV; Johnston NL; Sobeski JK; Datta P; Matthews RG
    J Biol Chem; 1989 Aug; 264(23):13888-95. PubMed ID: 2668277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A synthetic module for the metH gene permits facile mutagenesis of the cobalamin-binding region of Escherichia coli methionine synthase: initial characterization of seven mutant proteins.
    Amaratunga M; Fluhr K; Jarrett JT; Drennan CL; Ludwig ML; Matthews RG; Scholten JD
    Biochemistry; 1996 Feb; 35(7):2453-63. PubMed ID: 8652589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal active site elasticity linked to activation of homocysteine in methionine synthases.
    Koutmos M; Pejchal R; Bomer TM; Matthews RG; Smith JL; Ludwig ML
    Proc Natl Acad Sci U S A; 2008 Mar; 105(9):3286-91. PubMed ID: 18296644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A disulfide-stabilized conformer of methionine synthase reveals an unexpected role for the histidine ligand of the cobalamin cofactor.
    Datta S; Koutmos M; Pattridge KA; Ludwig ML; Matthews RG
    Proc Natl Acad Sci U S A; 2008 Mar; 105(11):4115-20. PubMed ID: 18332423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of a bacterial core methionine synthase.
    Deobald D; Hanna R; Shahryari S; Layer G; Adrian L
    Sci Rep; 2020 Feb; 10(1):2100. PubMed ID: 32034217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors modulating conformational equilibria in large modular proteins: a case study with cobalamin-dependent methionine synthase.
    Bandarian V; Ludwig ML; Matthews RG
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8156-63. PubMed ID: 12832615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.