These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 10625577)
1. Hypoxia, metabolic inhibition, and isolated rat mesenteric tone: influence of arterial diameter. Otter D; Austin C Microvasc Res; 2000 Jan; 59(1):107-14. PubMed ID: 10625577 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of superoxide anion-mediated impairment of endothelium by treatment with luteolin and apigenin in rat mesenteric artery. Ma X; Li YF; Gao Q; Ye ZG; Lu XJ; Wang HP; Jiang HD; Bruce IC; Xia Q Life Sci; 2008 Jul; 83(3-4):110-7. PubMed ID: 18558413 [TBL] [Abstract][Full Text] [Related]
4. The mechanisms of the direct action of etomidate on vascular reactivity in rat mesenteric resistance arteries. Shirozu K; Akata T; Yoshino J; Setoguchi H; Morikawa K; Hoka S Anesth Analg; 2009 Feb; 108(2):496-507. PubMed ID: 19151278 [TBL] [Abstract][Full Text] [Related]
5. Histamine decreases myogenic tone in rat cerebral arteries by H2-receptor-mediated KV channel activation, independent of endothelium and cyclic AMP. Jarajapu YP; Oomen C; Uteshev VV; Knot HJ Eur J Pharmacol; 2006 Oct; 547(1-3):116-24. PubMed ID: 16920098 [TBL] [Abstract][Full Text] [Related]
6. Vasorelaxing effects of propranolol in rat aorta and mesenteric artery: a role for nitric oxide and calcium entry blockade. Priviero FB; Teixeira CE; Toque HA; Claudino MA; Webb RC; De Nucci G; Zanesco A; Antunes E Clin Exp Pharmacol Physiol; 2006; 33(5-6):448-55. PubMed ID: 16700877 [TBL] [Abstract][Full Text] [Related]
7. Tempol improves vascular function in the mesenteric vascular bed of senescent rats. Tatchum-Talom R; Martin DS Can J Physiol Pharmacol; 2004 Mar; 82(3):200-7. PubMed ID: 15052286 [TBL] [Abstract][Full Text] [Related]
8. Evidence against potassium as an endothelium-derived hyperpolarizing factor in rat mesenteric small arteries. Lacy PS; Pilkington G; Hanvesakul R; Fish HJ; Boyle JP; Thurston H Br J Pharmacol; 2000 Feb; 129(3):605-11. PubMed ID: 10711361 [TBL] [Abstract][Full Text] [Related]
9. Alteration of vasoreactivity of mesenteric arteries in rats after two-week simulated weightlessness. Ma J; Zhang L; Yang T Space Med Med Eng (Beijing); 1998 Apr; 11(2):79-82. PubMed ID: 11543233 [TBL] [Abstract][Full Text] [Related]
10. Excitation-contraction coupling in resistance mesenteric arteries: evidence for NKCC1-mediated pathway. Koltsova SV; Kotelevtsev SV; Tremblay J; Hamet P; Orlov SN Biochem Biophys Res Commun; 2009 Feb; 379(4):1080-3. PubMed ID: 19150334 [TBL] [Abstract][Full Text] [Related]
11. Relaxatory effect of magnesium on mesenteric vascular beds differs from normal and streptozotocin induced diabetic rats. Soltani N; Keshavarz M; Sohanaki H; Zahedi Asl S; Dehpour AR Eur J Pharmacol; 2005 Jan; 508(1-3):177-81. PubMed ID: 15680269 [TBL] [Abstract][Full Text] [Related]
12. Insulin improves the endothelium-independent relaxation and the contractile response in aorta from hypertensive diabetic rats. Alonso C; Proto M; Coviello A; Peral de Bruno M Cell Mol Biol (Noisy-le-grand); 2005 Nov; 51(6):565-72. PubMed ID: 16309581 [TBL] [Abstract][Full Text] [Related]
13. Histamine-induced vasodilation and vasoconstriction in the mesenteric resistance artery of the rat. Jin H; Koyama T; Hatanaka Y; Akiyama S; Takayama F; Kawasaki H Eur J Pharmacol; 2006 Jan; 529(1-3):136-44. PubMed ID: 16337938 [TBL] [Abstract][Full Text] [Related]
14. Role of nitric oxide and prostaglandin systems in lithium modulation of acetylcholine vasodilation. Rahimzadeh-Rofouyi B; Afsharimani B; Moezi L; Ebrahimi F; Mehr SE; Mombeini T; Ghahremani MH; Dehpour AR J Cardiovasc Pharmacol; 2007 Dec; 50(6):641-6. PubMed ID: 18091580 [TBL] [Abstract][Full Text] [Related]
15. Vasorelaxation induced by the essential oil of Croton nepetaefolius and its constituents in rat aorta are partially mediated by the endothelium. Magalhães PJ; Lahlou S; Jucá DM; Coelho-de-Souza LN; da Frota PT; da Costa AM; Leal-Cardoso JH Fundam Clin Pharmacol; 2008 Apr; 22(2):169-77. PubMed ID: 18353112 [TBL] [Abstract][Full Text] [Related]
16. Augmented endothelium-derived hyperpolarizing factor-mediated relaxations attenuate endothelial dysfunction in femoral and mesenteric, but not in carotid arteries from type I diabetic rats. Shi Y; Ku DD; Man RY; Vanhoutte PM J Pharmacol Exp Ther; 2006 Jul; 318(1):276-81. PubMed ID: 16565165 [TBL] [Abstract][Full Text] [Related]
17. The effect of morphine in rat small mesenteric arteries. Ozdem SS; Batu O; Tayfun F; Yalcin O; Meiselman HJ; Baskurt OK Vascul Pharmacol; 2005 Jun; 43(1):56-61. PubMed ID: 15939674 [TBL] [Abstract][Full Text] [Related]
18. Endothelial cell loss enhances the pressor response in resistance vessels. Criscione L; Müller K; Forney Prescott M J Hypertens Suppl; 1984 Dec; 2(3):S441-4. PubMed ID: 6599695 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of oxidative phosphorylation, vascular tone, and [Ca2+]i in the perfused rat tail artery. Tran NN; Robert A; Atkinson J; Capdeville-Atkinson C Am J Physiol; 1997 Sep; 273(3 Pt 1):C834-42. PubMed ID: 9316403 [TBL] [Abstract][Full Text] [Related]
20. High sodium intake decreases pressure-induced (myogenic) tone and flow-induced dilation in resistance arteries from hypertensive rats. Matrougui K; Schiavi P; Guez D; Henrion D Hypertension; 1998 Jul; 32(1):176-9. PubMed ID: 9674657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]