BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 10625635)

  • 1. The importance of carboxyl groups on the lumenal side of the membrane for the function of the Ca(2+)-ATPase of sarcoplasmic reticulum.
    Webb RJ; Khan YM; East JM; Lee AG
    J Biol Chem; 2000 Jan; 275(2):977-82. PubMed ID: 10625635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anionic phospholipids decrease the rate of slippage on the Ca(2+)-ATPase of sarcoplasmic reticulum.
    Dalton KA; Pilot JD; Mall S; East JM; Lee AG
    Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):431-8. PubMed ID: 10455031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo aging of rat skeletal muscle sarcoplasmic reticulum Ca-ATPase. Chemical analysis and quantitative simulation by exposure to low levels of peroxyl radicals.
    Viner RI; Ferrington DA; Aced GI; Miller-Schlyer M; Bigelow DJ; Schöneich C
    Biochim Biophys Acta; 1997 Oct; 1329(2):321-35. PubMed ID: 9371424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pK change of acidic residues contributes to cation countertransport in the Ca-ATPase of sarcoplasmic reticulum. Role of H+ in Ca(2+)-ATPase countertransport.
    Yu X; Hao L; Inesi G
    J Biol Chem; 1994 Jun; 269(24):16656-61. PubMed ID: 8206985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lumenal and cytoplasmic binding sites for calcium on the calcium ATPase of sarcoplasmic reticulum are different and independent.
    Myung J; Jencks WP
    Biochemistry; 1994 Jul; 33(29):8775-85. PubMed ID: 8038168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations of either or both Cys876 and Cys888 residues of sarcoplasmic reticulum Ca2+-ATPase result in a complete loss of Ca2+ transport activity without a loss of Ca2+-dependent ATPase activity. Role of the CYS876-CYS888 disulfide bond.
    Daiho T; Yamasaki K; Saino T; Kamidochi M; Satoh K; Iizuka H; Suzuki H
    J Biol Chem; 2001 Aug; 276(35):32771-8. PubMed ID: 11438520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What the structure of a calcium pump tells us about its mechanism.
    Lee AG; East JM
    Biochem J; 2001 Jun; 356(Pt 3):665-83. PubMed ID: 11389676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sarcoplasmic reticulum calcium ATPase. Labeling of a putative Mg2+ site by reaction with a carbodiimide and a spin-label.
    Coan C; Jakobs P; Ji JY; Murphy AJ
    FEBS Lett; 1993 Nov; 335(1):33-6. PubMed ID: 7902300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curcumin, a molecule that inhibits the Ca2+-ATPase of sarcoplasmic reticulum but increases the rate of accumulation of Ca2+.
    Logan-Smith MJ; Lockyer PJ; East JM; Lee AG
    J Biol Chem; 2001 Dec; 276(50):46905-11. PubMed ID: 11592968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+ -ATPase structure in the E1 and E2 conformations: mechanism, helix-helix and helix-lipid interactions.
    Lee AG
    Biochim Biophys Acta; 2002 Oct; 1565(2):246-66. PubMed ID: 12409199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A calcium pump made visible.
    Lee AG
    Curr Opin Struct Biol; 2002 Aug; 12(4):547-54. PubMed ID: 12163080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plausible stoichiometry of the interacting nucleotide-binding sites in the Ca(2+)-ATPase from sarcoplasmic reticulum membranes.
    Merino JM; Gutiérrez-Merino C; Henao F
    Arch Biochem Biophys; 1999 Aug; 368(2):298-302. PubMed ID: 10441381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparable levels of Ca-ATPase inhibition by phospholamban in slow-twitch skeletal and cardiac sarcoplasmic reticulum.
    Ferrington DA; Yao Q; Squier TC; Bigelow DJ
    Biochemistry; 2002 Nov; 41(44):13289-96. PubMed ID: 12403631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of thapsigargin-releasable Ca(2+) from the Ca(2+)-ATPase of sarcoplasmic reticulum at limiting [Ca(2+)].
    Berman MC
    Biochim Biophys Acta; 2000 Dec; 1509(1-2):42-54. PubMed ID: 11118516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steroid-induced conformational changes of FITC-labelled sarcoplasmic reticulum Ca2+-ATPase.
    Vinokurov MG; Ivkova MN; Ivkov VG; Pechatnikov VA
    Membr Cell Biol; 2001; 14(4):517-27. PubMed ID: 11497106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A time-resolved Fourier transformed infrared difference spectroscopy study of the sarcoplasmic reticulum Ca(2+)-ATPase: kinetics of the high-affinity calcium binding at low temperature.
    Troullier A; Gerwert K; Dupont Y
    Biophys J; 1996 Dec; 71(6):2970-83. PubMed ID: 8968569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional consequences of alterations to Thr247, Pro248, Glu340, Asp813, Arg819, and Arg822 at the interfaces between domain P, M3, and L6-7 of sarcoplasmic reticulum Ca2+-ATPase. Roles in Ca2+ interaction and phosphoenzyme processing.
    Clausen JD; Andersen JP
    J Biol Chem; 2004 Dec; 279(52):54426-37. PubMed ID: 15485864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible inhibition of the calcium-pumping ATPase in native cardiac sarcoplasmic reticulum by a calmodulin-binding peptide. Evidence for calmodulin-dependent regulation of the V(max) of calcium transport.
    Xu A; Narayanan N
    J Biol Chem; 2000 Feb; 275(6):4407-16. PubMed ID: 10660612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sites of labeling with N-(3-pyrene)maleimide on Ca(2+)-transporting ATPase of the sarcoplasmic reticulum.
    Suzuki T; Kawakita M
    J Biochem; 1995 Apr; 117(4):881-7. PubMed ID: 7592554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The two calcium ions initially bound to nonphosphorylated sarcoplasmic reticulum Ca(2+)-ATPase can no longer be kinetically distinguished when they dissociate from phosphorylated ATPase toward the lumen.
    Orlowski S; Champeil P
    Biochemistry; 1991 Nov; 30(47):11331-42. PubMed ID: 1835657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.