BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 10625645)

  • 21. Molecular characterization of mutants affected in the osmoprotectant-dependent induction of phospholipase C in Pseudomonas aeruginosa PAO1.
    Sage AE; Vasil AI; Vasil ML
    Mol Microbiol; 1997 Jan; 23(1):43-56. PubMed ID: 9004219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of LysA (Rv1293) from Mycobacterium tuberculosis.
    Kefala G; Perry LJ; Weiss MS
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Aug; 61(Pt 8):782-4. PubMed ID: 16511157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of an Escherichia coli lysA targeted deletion mutant by double cross-over recombination for potential use in a bacterial growth-based lysine assay.
    Li X; Ricke SC
    Lett Appl Microbiol; 2003; 37(6):458-62. PubMed ID: 14633099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis for substrate specificity of meso-diaminopimelic acid decarboxylase from Corynebacterium glutamicum.
    Son HF; Kim KJ
    Biochem Biophys Res Commun; 2018 Jan; 495(2):1815-1821. PubMed ID: 29233695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High expression of the second lysine decarboxylase gene, ldc, in Escherichia coli WC196 due to the recognition of the stop codon (TAG), at a position which corresponds to the 33th amino acid residue of sigma38, as a serine residue by the amber suppressor, supD.
    Nagano T; Kikuchi Y; Kamio Y
    Biosci Biotechnol Biochem; 2000 Sep; 64(9):2012-7. PubMed ID: 11055416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An optimized coupled assay for quantifying diaminopimelate decarboxylase activity.
    Peverelli MG; Perugini MA
    Biochimie; 2015 Aug; 115():78-85. PubMed ID: 25986217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glycine betaine, an osmotic effector in Klebsiella pneumoniae and other members of the Enterobacteriaceae.
    Le Rudulier D; Bouillard L
    Appl Environ Microbiol; 1983 Jul; 46(1):152-9. PubMed ID: 6351742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth of Escherichia coli in human urine: role of salt tolerance and accumulation of glycine betaine.
    Kunin CM; Hua TH; Van Arsdale White L; Villarejo M
    J Infect Dis; 1992 Dec; 166(6):1311-5. PubMed ID: 1431248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycine Betaine Monooxygenase, an Unusual Rieske-Type Oxygenase System, Catalyzes the Oxidative
    Shao YH; Guo LZ; Zhang YQ; Yu H; Zhao BS; Pang HQ; Lu WD
    Appl Environ Microbiol; 2018 Jul; 84(13):. PubMed ID: 29703733
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD.
    Kappes RM; Kempf B; Bremer E
    J Bacteriol; 1996 Sep; 178(17):5071-9. PubMed ID: 8752321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The osmoprotectant glycine betaine inhibits salt-induced cross-tolerance towards lethal treatment in Enterococcus faecalis.
    Pichereau V; Bourot S; Flahaut S; Blanco C; Auffray Y; Bernard T
    Microbiology (Reading); 1999 Feb; 145 ( Pt 2)():427-435. PubMed ID: 10075425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses.
    Diamant S; Eliahu N; Rosenthal D; Goloubinoff P
    J Biol Chem; 2001 Oct; 276(43):39586-91. PubMed ID: 11517217
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation and characterization of ButA, a secondary glycine betaine transport system operating in Tetragenococcus halophila.
    Baliarda A; Robert H; Jebbar M; Blanco C; Le Marrec C
    Curr Microbiol; 2003 Oct; 47(4):347-51. PubMed ID: 14629018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes.
    Boch J; Kempf B; Schmid R; Bremer E
    J Bacteriol; 1996 Sep; 178(17):5121-9. PubMed ID: 8752328
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of urea and glycine betaine to quantify coupled folding and probe the burial of DNA phosphates in lac repressor-lac operator binding.
    Hong J; Capp MW; Saecker RM; Record MT
    Biochemistry; 2005 Dec; 44(51):16896-911. PubMed ID: 16363803
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the Erwinia chrysanthemi osmoprotectant transporter gene ousA.
    Gouesbet G; Trautwetter A; Bonnassie S; Wu LF; Blanco C
    J Bacteriol; 1996 Jan; 178(2):447-55. PubMed ID: 8550465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of an Escherichia coli lysA insertion targeted mutant using phenotype arrays.
    Li X; Ricke SC
    Bioresour Technol; 2003 Sep; 89(3):249-53. PubMed ID: 12798115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dicarboxylic amino acids and glycine-betaine regulate chaperone-mediated protein-disaggregation under stress.
    Diamant S; Rosenthal D; Azem A; Eliahu N; Ben-Zvi AP; Goloubinoff P
    Mol Microbiol; 2003 Jul; 49(2):401-10. PubMed ID: 12828638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of stable, genetically well-defined conditionally viable Escherichia coli strains.
    Degryse E
    Mol Gen Genet; 1991 May; 227(1):49-51. PubMed ID: 1646386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cloned structural genes for the osmotically regulated binding-protein-dependent glycine betaine transport system (ProU) of Escherichia coli K-12.
    Faatz E; Middendorf A; Bremer E
    Mol Microbiol; 1988 Mar; 2(2):265-79. PubMed ID: 2837616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.