BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10626786)

  • 1. Down-regulation of nuclear factor kappaB is required for p53-dependent apoptosis in X-ray-irradiated mouse lymphoma cells and thymocytes.
    Kawai H; Yamada Y; Tatsuka M; Niwa O; Yamamoto K; Suzuki F
    Cancer Res; 1999 Dec; 59(24):6038-41. PubMed ID: 10626786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of apoptosis-resistant mutants from a radiosensitive mouse lymphoma cell line.
    Kawai H; Kitamura Y; Nikaido O; Tatsuka M; Hama-Inaba H; Muto M; Ohyama H; Suzuki F
    Radiat Res; 1998 Jan; 149(1):41-51. PubMed ID: 9421153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional p53 is required for triptolide-induced apoptosis and AP-1 and nuclear factor-kappaB activation in gastric cancer cells.
    Jiang XH; Wong BC; Lin MC; Zhu GH; Kung HF; Jiang SH; Yang D; Lam SK
    Oncogene; 2001 Nov; 20(55):8009-18. PubMed ID: 11753684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB.
    Menendez JA; Mehmi I; Atlas E; Colomer R; Lupu R
    Int J Oncol; 2004 Mar; 24(3):591-608. PubMed ID: 14767544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutant human tumor suppressor p53 modulates the activation of mitogen-activated protein kinase and nuclear factor-kappaB, but not c-Jun N-terminal kinase and activated protein-1.
    Gulati AP; Yang YM; Harter D; Mukhopadhyay A; Aggarwal BB; Benzil DL; Whysner J; Albino AP; Murali R; Jhanwar-Uniyal M
    Mol Carcinog; 2006 Jan; 45(1):26-37. PubMed ID: 16267831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Cross-talk between nuclear factor-kappaB and P53 signal pathway in keratinocytes after ultraviolet B irradiation].
    Wang P; Song XZ; Bi ZG; Xu AE; Cui YG
    Zhonghua Yi Xue Za Zhi; 2007 Nov; 87(43):3088-91. PubMed ID: 18261359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knock-in mice with a chimeric human/murine p53 gene develop normally and show wild-type p53 responses to DNA damaging agents: a new biomedical research tool.
    Luo JL; Yang Q; Tong WM; Hergenhahn M; Wang ZQ; Hollstein M
    Oncogene; 2001 Jan; 20(3):320-8. PubMed ID: 11313961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of nuclear factor-kappaB, p53, and p21/WAF1 in daunomycin-induced cell cycle arrest and apoptosis.
    Hellin AC; Bentires-Alj M; Verlaet M; Benoit V; Gielen J; Bours V; Merville MP
    J Pharmacol Exp Ther; 2000 Dec; 295(3):870-8. PubMed ID: 11082419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rituximab (chimeric anti-CD20 monoclonal antibody) inhibits the constitutive nuclear factor-{kappa}B signaling pathway in non-Hodgkin's lymphoma B-cell lines: role in sensitization to chemotherapeutic drug-induced apoptosis.
    Jazirehi AR; Huerta-Yepez S; Cheng G; Bonavida B
    Cancer Res; 2005 Jan; 65(1):264-76. PubMed ID: 15665303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of nuclear factor kappaB in radioresistance of TP53-inactive human keratinocytes.
    Chen X; Shen B; Xia L; Khaletzkiy A; Chu D; Wong JY; Li JJ
    Cancer Res; 2002 Feb; 62(4):1213-21. PubMed ID: 11861406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. p53 regulates cyclophosphamide teratogenesis by controlling caspases 3, 8, 9 activation and NF-kappaB DNA binding.
    Pekar O; Molotski N; Savion S; Fein A; Toder V; Torchinsky A
    Reproduction; 2007 Aug; 134(2):379-88. PubMed ID: 17660247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Id-1 expression promotes cell survival through activation of NF-kappaB signalling pathway in prostate cancer cells.
    Ling MT; Wang X; Ouyang XS; Xu K; Tsao SW; Wong YC
    Oncogene; 2003 Jul; 22(29):4498-508. PubMed ID: 12881706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parthenolide sensitizes cells to X-ray-induced cell killing through inhibition of NF-kappaB and split-dose repair.
    Mendonca MS; Chin-Sinex H; Gomez-Millan J; Datzman N; Hardacre M; Comerford K; Nakshatri H; Nye M; Benjamin L; Mehta S; Patino F; Sweeney C
    Radiat Res; 2007 Dec; 168(6):689-97. PubMed ID: 18088190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutively activated nuclear factor-kappaB, but not induced NF-kappaB, leads to TRAIL resistance by up-regulation of X-linked inhibitor of apoptosis protein in human cancer cells.
    Braeuer SJ; Büneker C; Mohr A; Zwacka RM
    Mol Cancer Res; 2006 Oct; 4(10):715-28. PubMed ID: 17050666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of NF-kappaB in p53-mediated programmed cell death.
    Ryan KM; Ernst MK; Rice NR; Vousden KH
    Nature; 2000 Apr; 404(6780):892-7. PubMed ID: 10786798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Down-regulation of the nuclear factor-kappaB by lidamycin in association with inducing apoptosis in human pancreatic cancer cells and inhibiting xenograft growth.
    Chen J; Ouyang ZG; Zhang SH; Zhen YS
    Oncol Rep; 2007 Jun; 17(6):1445-51. PubMed ID: 17487403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermosensitization by parthenolide in human lung adenocarcinoma A549 cells and p53- and hsp72-independent apoptosis induction via the nuclear factor-kappaB signal pathway.
    Hayashi S; Hatashita M; Hayashi A; Matsumoto H; Shioura H; Kitai R
    Int J Mol Med; 2008 May; 21(5):585-92. PubMed ID: 18425350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic deletion of PKR abrogates TNF-induced activation of IkappaBalpha kinase, JNK, Akt and cell proliferation but potentiates p44/p42 MAPK and p38 MAPK activation.
    Takada Y; Ichikawa H; Pataer A; Swisher S; Aggarwal BB
    Oncogene; 2007 Feb; 26(8):1201-12. PubMed ID: 16924232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Curcumin downregulates the constitutive activity of NF-kappaB and induces apoptosis in novel mouse melanoma cells.
    Marín YE; Wall BA; Wang S; Namkoong J; Martino JJ; Suh J; Lee HJ; Rabson AB; Yang CS; Chen S; Ryu JH
    Melanoma Res; 2007 Oct; 17(5):274-83. PubMed ID: 17885582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function.
    de Vries A; Flores ER; Miranda B; Hsieh HM; van Oostrom CT; Sage J; Jacks T
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2948-53. PubMed ID: 11867759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.