BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 10627041)

  • 21. A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria.
    Dinh T; Paulsen IT; Saier MH
    J Bacteriol; 1994 Jul; 176(13):3825-31. PubMed ID: 8021163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel ligands for the extracellular solute receptors of two bacterial TRAP transporters.
    Thomas GH; Southworth T; León-Kempis MR; Leech A; Kelly DJ
    Microbiology (Reading); 2006 Jan; 152(Pt 1):187-198. PubMed ID: 16385129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria.
    Paulsen IT; Beness AM; Saier MH
    Microbiology (Reading); 1997 Aug; 143 ( Pt 8)():2685-2699. PubMed ID: 9274022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Topological analysis of integral membrane constituents of prokaryotic ABC efflux systems.
    Khwaja M; Ma Q; Saier MH
    Res Microbiol; 2005 Mar; 156(2):270-7. PubMed ID: 15748994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence that the high affinity C4-dicarboxylate transport system of Rhodobacter capsulatus is a novel type of periplasmic permease.
    Forward JA; Behrendt MC; Kelly DJ
    Biochem Soc Trans; 1993 Nov; 21(4):343S. PubMed ID: 8131925
    [No Abstract]   [Full Text] [Related]  

  • 26. Size comparisons among integral membrane transport protein homologues in bacteria, Archaea, and Eucarya.
    Chung YJ; Krueger C; Metzgar D; Saier MH
    J Bacteriol; 2001 Feb; 183(3):1012-21. PubMed ID: 11208800
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Escherichia coli possesses two homologous anaerobic C4-dicarboxylate membrane transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct).
    Six S; Andrews SC; Unden G; Guest JR
    J Bacteriol; 1994 Nov; 176(21):6470-8. PubMed ID: 7961398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structures of two Bordetella pertussis periplasmic receptors contribute to defining a novel pyroglutamic acid binding DctP subfamily.
    Rucktooa P; Antoine R; Herrou J; Huvent I; Locht C; Jacob-Dubuisson F; Villeret V; Bompard C
    J Mol Biol; 2007 Jun; 370(1):93-106. PubMed ID: 17499270
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria.
    Tam R; Saier MH
    Microbiol Rev; 1993 Jun; 57(2):320-46. PubMed ID: 8336670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tinkering with transporters: periplasmic binding protein-dependent maltose transport in E. coli.
    Shuman HA; Panagiotidis CH
    J Bioenerg Biomembr; 1993 Dec; 25(6):613-20. PubMed ID: 7511584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The VC1777-VC1779 proteins are members of a sialic acid-specific subfamily of TRAP transporters (SiaPQM) and constitute the sole route of sialic acid uptake in the human pathogen Vibrio cholerae.
    Chowdhury N; Norris J; McAlister E; Lau SYK; Thomas GH; Boyd EF
    Microbiology (Reading); 2012 Aug; 158(Pt 8):2158-2167. PubMed ID: 22556361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 1.55 A structure of the ectoine binding protein TeaA of the osmoregulated TRAP-transporter TeaABC from Halomonas elongata.
    Kuhlmann SI; Terwisscha van Scheltinga AC; Bienert R; Kunte HJ; Ziegler C
    Biochemistry; 2008 Sep; 47(36):9475-85. PubMed ID: 18702523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sequence relationships between integral inner membrane proteins of binding protein-dependent transport systems: evolution by recurrent gene duplications.
    Saurin W; Dassa E
    Protein Sci; 1994 Feb; 3(2):325-44. PubMed ID: 8003968
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tripartite ATP-independent Periplasmic (TRAP) Transporters Use an Arginine-mediated Selectivity Filter for High Affinity Substrate Binding.
    Fischer M; Hopkins AP; Severi E; Hawkhead J; Bawdon D; Watts AG; Hubbard RE; Thomas GH
    J Biol Chem; 2015 Nov; 290(45):27113-27123. PubMed ID: 26342690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequence analysis and interposon mutagenesis of a sensor-kinase (DctS) and response-regulator (DctR) controlling synthesis of the high-affinity C4-dicarboxylate transport system in Rhodobacter capsulatus.
    Hamblin MJ; Shaw JG; Kelly DJ
    Mol Gen Genet; 1993 Feb; 237(1-2):215-24. PubMed ID: 8455557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities.
    Paulsen IT; Sliwinski MK; Saier MH
    J Mol Biol; 1998 Apr; 277(3):573-92. PubMed ID: 9533881
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases.
    Kuan G; Dassa E; Saurin W; Hofnung M; Saier MH
    Res Microbiol; 1995 May; 146(4):271-8. PubMed ID: 7569321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein-dependent transport system.
    Schneider R; Hantke K
    Mol Microbiol; 1993 Apr; 8(1):111-21. PubMed ID: 8388528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis.
    Asai K; Baik SH; Kasahara Y; Moriya S; Ogasawara N
    Microbiology (Reading); 2000 Feb; 146 ( Pt 2)():263-271. PubMed ID: 10708364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new subfamily of bacterial ABC-type transport systems catalyzing export of drugs and carbohydrates.
    Reizer J; Reizer A; Saier MH
    Protein Sci; 1992 Oct; 1(10):1326-32. PubMed ID: 1303751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.