BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 10627041)

  • 41. Three highly homologous membrane-bound lipoproteins participate in oligopeptide transport by the Ami system of the gram-positive Streptococcus pneumoniae.
    Alloing G; de Philip P; Claverys JP
    J Mol Biol; 1994 Aug; 241(1):44-58. PubMed ID: 8051706
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Perturbation of the equilibrium between open and closed conformations of the periplasmic C4-dicarboxylate binding protein from Rhodobacter capsulatus.
    Walmsley AR; Shaw JG; Kelly DJ
    Biochemistry; 1992 Nov; 31(45):11175-81. PubMed ID: 1445856
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cooperation of Secondary Transporters and Sensor Kinases in Transmembrane Signalling: The DctA/DcuS and DcuB/DcuS Sensor Complexes of Escherichia coli.
    Unden G; Wörner S; Monzel C
    Adv Microb Physiol; 2016; 68():139-67. PubMed ID: 27134023
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Iron(III) hydroxamate transport across the cytoplasmic membrane of Escherichia coli.
    Köster W
    Biol Met; 1991; 4(1):23-32. PubMed ID: 1830209
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Diversity of transport mechanisms: common structural principles.
    Driessen AJ; Rosen BP; Konings WN
    Trends Biochem Sci; 2000 Aug; 25(8):397-401. PubMed ID: 10916161
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Na+-coupled C4-dicarboxylate transporter (Asuc_0304) and aerobic growth of Actinobacillus succinogenes on C4-dicarboxylates.
    Rhie MN; Yoon HE; Oh HY; Zedler S; Unden G; Kim OB
    Microbiology (Reading); 2014 Jul; 160(Pt 7):1533-1544. PubMed ID: 24742960
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sialic acid acquisition in bacteria-one substrate, many transporters.
    Thomas GH
    Biochem Soc Trans; 2016 Jun; 44(3):760-5. PubMed ID: 27284039
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adaptation of microorganisms and their transport systems to high temperatures.
    Tolner B; Poolman B; Konings WN
    Comp Biochem Physiol A Physiol; 1997 Nov; 118(3):423-8. PubMed ID: 9406426
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Topological analysis of DcuA, an anaerobic C4-dicarboxylate transporter of Escherichia coli.
    Golby P; Kelly DJ; Guest JR; Andrews SC
    J Bacteriol; 1998 Sep; 180(18):4821-7. PubMed ID: 9733683
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure and mechanism of a tripartite ATP-independent periplasmic TRAP transporter.
    Davies JS; Currie MJ; North RA; Scalise M; Wright JD; Copping JM; Remus DM; Gulati A; Morado DR; Jamieson SA; Newton-Vesty MC; Abeysekera GS; Ramaswamy S; Friemann R; Wakatsuki S; Allison JR; Indiveri C; Drew D; Mace PD; Dobson RCJ
    Nat Commun; 2023 Feb; 14(1):1120. PubMed ID: 36849793
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The CorA magnesium transporter gene family.
    Kehres DG; Lawyer CH; Maguire ME
    Microb Comp Genomics; 1998; 3(3):151-69. PubMed ID: 9775386
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The membrane proteins SiaQ and SiaM form an essential stoichiometric complex in the sialic acid tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM (VC1777-1779) from Vibrio cholerae.
    Mulligan C; Leech AP; Kelly DJ; Thomas GH
    J Biol Chem; 2012 Jan; 287(5):3598-608. PubMed ID: 22167185
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The mechanism of ligand binding to the periplasmic C4-dicarboxylate binding protein (DctP) from Rhodobacter capsulatus.
    Walmsley AR; Shaw JG; Kelly DJ
    J Biol Chem; 1992 Apr; 267(12):8064-72. PubMed ID: 1569065
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phylogenetic conservation of 4-aminobutyric acid (GABA) transporter isoforms. Cloning and pharmacological characterization of a GABA/beta-alanine transporter from Torpedo.
    Guimbal C; Klostermann A; Kilimann MW
    Eur J Biochem; 1995 Dec; 234(3):794-800. PubMed ID: 8575437
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bioinformatic analyses of the bacterial L-ascorbate phosphotransferase system permease family.
    Hvorup R; Chang AB; Saier MH
    J Mol Microbiol Biotechnol; 2003; 6(3-4):191-205. PubMed ID: 15153772
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging.
    Iyer LM; Makarova KS; Koonin EV; Aravind L
    Nucleic Acids Res; 2004; 32(17):5260-79. PubMed ID: 15466593
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins.
    Tseng TT; Gratwick KS; Kollman J; Park D; Nies DH; Goffeau A; Saier MH
    J Mol Microbiol Biotechnol; 1999 Aug; 1(1):107-25. PubMed ID: 10941792
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transcriptional regulation and organization of the dcuA and dcuB genes, encoding homologous anaerobic C4-dicarboxylate transporters in Escherichia coli.
    Golby P; Kelly DJ; Guest JR; Andrews SC
    J Bacteriol; 1998 Dec; 180(24):6586-96. PubMed ID: 9852003
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Membrane topology of the Mep/Amt family of ammonium transporters.
    Thomas GH; Mullins JG; Merrick M
    Mol Microbiol; 2000 Jul; 37(2):331-44. PubMed ID: 10931328
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evolution of the oligopeptide transporter family.
    Gomolplitinant KM; Saier MH
    J Membr Biol; 2011 Mar; 240(2):89-110. PubMed ID: 21347612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.