These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 10627042)
1. Strategies to determine the extent of control exerted by glucose transport on glycolytic flux in the yeast Saccharomyces bayanus. Diderich JA; Teusink B; Valkier J; Anjos J; Spencer-Martins I; van Dam K; Walsh MC Microbiology (Reading); 1999 Dec; 145 ( Pt 12)():3447-3454. PubMed ID: 10627042 [TBL] [Abstract][Full Text] [Related]
2. Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae. Reijenga KA; Snoep JL; Diderich JA; van Verseveld HW; Westerhoff HV; Teusink B Biophys J; 2001 Feb; 80(2):626-34. PubMed ID: 11159431 [TBL] [Abstract][Full Text] [Related]
3. Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei. Bakker BM; Walsh MC; ter Kuile BH; Mensonides FI; Michels PA; Opperdoes FR; Westerhoff HV Proc Natl Acad Sci U S A; 1999 Aug; 96(18):10098-103. PubMed ID: 10468568 [TBL] [Abstract][Full Text] [Related]
4. Schemes of flux control in a model of Saccharomyces cerevisiae glycolysis. Pritchard L; Kell DB Eur J Biochem; 2002 Aug; 269(16):3894-904. PubMed ID: 12180966 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of glycolytic oscillation in yeast. I. Aerobic and anaerobic growth conditions for obtaining glycolytic oscillation. Hess B; Boiteux A Hoppe Seylers Z Physiol Chem; 1968 Nov; 349(11):1567-74. PubMed ID: 5745907 [No Abstract] [Full Text] [Related]
6. Decrease in glycolytic flux in Saccharomyces cerevisiae cdc35-1 cells at restrictive temperature correlates with a decrease in glucose transport. Oehlen LJ; Scholte ME; de Koning W; van Dam K Microbiology (Reading); 1994 Aug; 140 ( Pt 8)():1891-8. PubMed ID: 7921242 [TBL] [Abstract][Full Text] [Related]
7. Effects of overexpression of phosphofructokinase on glycolysis in the yeast Saccharomyces cerevisiae. Davies SE; Brindle KM Biochemistry; 1992 May; 31(19):4729-35. PubMed ID: 1533788 [TBL] [Abstract][Full Text] [Related]
8. Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae. Elbing K; Larsson C; Bill RM; Albers E; Snoep JL; Boles E; Hohmann S; Gustafsson L Appl Environ Microbiol; 2004 Sep; 70(9):5323-30. PubMed ID: 15345416 [TBL] [Abstract][Full Text] [Related]
9. Control of the glycolytic flux in Saccharomyces cerevisiae grown at low temperature: a multi-level analysis in anaerobic chemostat cultures. Tai SL; Daran-Lapujade P; Luttik MA; Walsh MC; Diderich JA; Krijger GC; van Gulik WM; Pronk JT; Daran JM J Biol Chem; 2007 Apr; 282(14):10243-51. PubMed ID: 17251183 [TBL] [Abstract][Full Text] [Related]
10. Glucose uptake and metabolism in grr1/cat80 mutants of Saccharomyces cerevisiae. Ozcan S; Schulte F; Freidel K; Weber A; Ciriacy M Eur J Biochem; 1994 Sep; 224(2):605-11. PubMed ID: 7925377 [TBL] [Abstract][Full Text] [Related]
11. Regulation of maltose transport in Saccharomyces cerevisiae. Brondijk TH; Konings WN; Poolman B Arch Microbiol; 2001 Jul; 176(1-2):96-105. PubMed ID: 11479708 [TBL] [Abstract][Full Text] [Related]
12. Comparison of glucose uptake kinetics in different yeasts. Does AL; Bisson LF J Bacteriol; 1989 Mar; 171(3):1303-8. PubMed ID: 2646277 [TBL] [Abstract][Full Text] [Related]
13. A fast sensor for in vivo quantification of cytosolic phosphate in Saccharomyces cerevisiae. Zhang J; Sassen T; ten Pierick A; Ras C; Heijnen JJ; Wahl SA Biotechnol Bioeng; 2015 May; 112(5):1033-46. PubMed ID: 25502731 [TBL] [Abstract][Full Text] [Related]
14. Quantitative comparison of transient growth of Saccharomyces cerevisiae, Saccharomyces kluyveri, and Kluyveromyces lactis. Herwig C; Von Stockar U Biotechnol Bioeng; 2003 Mar; 81(7):837-47. PubMed ID: 12557317 [TBL] [Abstract][Full Text] [Related]
15. Trans-regulation and localization of orthologous maltose transporters in the interspecies lager yeast hybrid. Vidgren V; Gibson B FEMS Yeast Res; 2018 Sep; 18(6):. PubMed ID: 29931058 [TBL] [Abstract][Full Text] [Related]
16. Modeling response of glycolysis in S. cerevisiae cells harvested at diauxic shift. Albers E; Bakker BM; Gustafsson L Mol Biol Rep; 2002; 29(1-2):119-23. PubMed ID: 12241040 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the metabolic shift of Saccharomyces bayanus var. uvarum by continuous aerobic culture. Serra A; Strehaiano P; Taillandier P Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):564-8. PubMed ID: 12679850 [TBL] [Abstract][Full Text] [Related]
18. Differential regulation by glucose and fructose of a gene encoding a specific fructose/H+ symporter in Saccharomyces sensu stricto yeasts. Rodrigues de Sousa H; Spencer-Martins I; Gonçalves P Yeast; 2004 Apr; 21(6):519-30. PubMed ID: 15116434 [TBL] [Abstract][Full Text] [Related]
19. SNF1 controls the glycolytic flux and mitochondrial respiration. Martinez-Ortiz C; Carrillo-Garmendia A; Correa-Romero BF; Canizal-García M; González-Hernández JC; Regalado-Gonzalez C; Olivares-Marin IK; Madrigal-Perez LA Yeast; 2019 Aug; 36(8):487-494. PubMed ID: 31074533 [TBL] [Abstract][Full Text] [Related]
20. Characterization of glucose transport mutants of Saccharomyces cerevisiae during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux. Bosch D; Johansson M; Ferndahl C; Franzén CJ; Larsson C; Gustafsson L FEMS Yeast Res; 2008 Feb; 8(1):10-25. PubMed ID: 18042231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]