These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10627042)

  • 21. Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux.
    Reifenberger E; Freidel K; Ciriacy M
    Mol Microbiol; 1995 Apr; 16(1):157-67. PubMed ID: 7651133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glycolysis controls plasma membrane glucose sensors to promote glucose signaling in yeasts.
    Cairey-Remonnay A; Deffaud J; Wésolowski-Louvel M; Lemaire M; Soulard A
    Mol Cell Biol; 2015 Feb; 35(4):747-57. PubMed ID: 25512610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The low-affinity component of Saccharomyces cerevisiae maltose transport is an artifact.
    Benito B; Lagunas R
    J Bacteriol; 1992 May; 174(9):3065-9. PubMed ID: 1314809
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flux regulation in glycogen-induced oscillatory glycolysis in cell-free extracts of Saccharomyces carlsbergensis.
    Jonnalagadda SB; Becker JU; Sel'kov EE; Betz A
    Biosystems; 1982; 15(1):49-58. PubMed ID: 7082784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic control in flow systems. I. Sustained glycolytic oscillations in yeast suspension under continual substrate infusion.
    von Klitzing L; Betz A
    Arch Mikrobiol; 1970; 71(3):220-5. PubMed ID: 4319266
    [No Abstract]   [Full Text] [Related]  

  • 26. Intracellular glucose concentration in derepressed yeast cells consuming glucose is high enough to reduce the glucose transport rate by 50%.
    Teusink B; Diderich JA; Westerhoff HV; van Dam K; Walsh MC
    J Bacteriol; 1998 Feb; 180(3):556-62. PubMed ID: 9457857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fsy1, the sole hexose-proton transporter characterized in Saccharomyces yeasts, exhibits a variable fructose:H(+) stoichiometry.
    Anjos J; Rodrigues de Sousa H; Roca C; Cássio F; Luttik M; Pronk JT; Salema-Oom M; Gonçalves P
    Biochim Biophys Acta; 2013 Feb; 1828(2):201-7. PubMed ID: 22922355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Gustafsson L
    Yeast; 2000 Jun; 16(9):797-809. PubMed ID: 10861904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae.
    Beullens M; Mbonyi K; Geerts L; Gladines D; Detremerie K; Jans AW; Thevelein JM
    Eur J Biochem; 1988 Feb; 172(1):227-31. PubMed ID: 2831059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions.
    Larsson C; Nilsson A; Blomberg A; Gustafsson L
    J Bacteriol; 1997 Dec; 179(23):7243-50. PubMed ID: 9393686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional studies of yeast glucokinase.
    Clifton D; Walsh RB; Fraenkel DG
    J Bacteriol; 1993 Jun; 175(11):3289-94. PubMed ID: 8501032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lactate balance in perfused rat liver: effects of glucose concentration, flow and low pH on glucose to lactate flux.
    Sestoft L; Marshall MO
    Scand J Clin Lab Invest; 1990 Nov; 50(7):781-5. PubMed ID: 2293340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of D-fructose and fructose 1-phosphate with yeast phosphofructokinase and its influence on glycolytic oscillations.
    Kreuzberg K
    Biochim Biophys Acta; 1978 Nov; 527(1):229-38. PubMed ID: 152653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Yeast sugar transporters.
    Bisson LF; Coons DM; Kruckeberg AL; Lewis DA
    Crit Rev Biochem Mol Biol; 1993; 28(4):259-308. PubMed ID: 8403984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Substrate inhibition kinetics of Saccharomyces cerevisiae in fed-batch cultures operated at constant glucose and maltose concentration levels.
    Papagianni M; Boonpooh Y; Mattey M; Kristiansen B
    J Ind Microbiol Biotechnol; 2007 Apr; 34(4):301-9. PubMed ID: 17211636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overexpressed maltose transporters in laboratory and lager yeasts: Localization and competition with endogenous transporters.
    Vidgren V; Londesborough J
    Yeast; 2018 Oct; 35(10):567-576. PubMed ID: 29851426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three Agt1 transporters from brewer's yeasts exhibit different temperature dependencies for maltose transport over the range of brewery temperatures (0–20 °C).
    Vidgren V; Viljanen K; Mattinen L; Rautio J; Londesborough J
    FEMS Yeast Res; 2014 Jun; 14(4):601-13. PubMed ID: 25035870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of nickelous ions on carbohydrate transport in yeast cells.
    van Steveninck J
    Biochim Biophys Acta; 1966 Sep; 126(1):154-62. PubMed ID: 5970535
    [No Abstract]   [Full Text] [Related]  

  • 39. An excess of glycolytic enzymes under glucose-limited conditions may enable Saccharomyces cerevisiae to adapt to nutrient availability.
    Grigaitis P; Teusink B
    FEBS Lett; 2022 Dec; 596(24):3203-3210. PubMed ID: 36008883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 2-Deoxy-D-glucose resistant yeast with altered sugar transport activity.
    Novak S; D'Amore T; Stewart GG
    FEBS Lett; 1990 Aug; 269(1):202-4. PubMed ID: 2201568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.