These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10627079)

  • 1. Compensatory hyperphagia after fasting tracks recovery of liver energy status.
    Ji H; Friedman MI
    Physiol Behav; 1999 Dec 1-15; 68(1-2):181-6. PubMed ID: 10627079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatty acid oxidation affects food intake by altering hepatic energy status.
    Friedman MI; Harris RB; Ji H; Ramirez I; Tordoff MG
    Am J Physiol; 1999 Apr; 276(4):R1046-53. PubMed ID: 10198384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Etomoxir, a fatty acid oxidation inhibitor, increases food intake and reduces hepatic energy status in rats.
    Horn CC; Ji H; Friedman MI
    Physiol Behav; 2004 Mar; 81(1):157-62. PubMed ID: 15059695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of liver denervation on compensatory changes in food intake, body composition and hepatic enzyme induction after food restriction in rats.
    Martin RJ; Beverly JL; Hausman DB; Bellinger LL
    J Nutr; 1990 Aug; 120(8):893-9. PubMed ID: 2380797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of fasting, intermittent feeding, or continuous parenteral nutrition on rat liver and brain energy metabolism as assessed by 31P-NMR.
    Bodoky G; Yang ZJ; Meguid MM; Laviano A; Szeverenyi N
    Physiol Behav; 1995 Sep; 58(3):521-7. PubMed ID: 8587960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of fasting, hypocaloric feeding, and refeeding on the energetics of stimulated rat muscle as assessed by nuclear magnetic resonance spectroscopy.
    Mijan de la Torre A; Madapallimattam A; Cross A; Armstrong RL; Jeejeebhoy KN
    J Clin Invest; 1993 Jul; 92(1):114-21. PubMed ID: 8325976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kaolinite ingestion facilitates restoration of body energy reserves during refeeding after prolonged fasting.
    Reichardt F; Chaumande B; Habold C; Robin JP; Ehret-Sabatier L; Le Maho Y; Liewig N; Angel F; Lignot JH
    Fundam Clin Pharmacol; 2012 Oct; 26(5):577-88. PubMed ID: 21913975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refeeding after the late increase in nitrogen excretion during prolonged fasting in the rat.
    Cherel Y; Le Maho Y
    Physiol Behav; 1991 Aug; 50(2):345-9. PubMed ID: 1745679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hepatic mitochondrial energy production in rats with chronic iron overload.
    Bacon BR; O'Neill R; Britton RS
    Gastroenterology; 1993 Oct; 105(4):1134-40. PubMed ID: 8405859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of constant feeding with bouts of fasting-refeeding at three levels of nutrition in the rat.
    Hill JO; Thacker S; Newby D; Nickel M; Digirolamo M
    Int J Obes; 1987; 11(3):251-62. PubMed ID: 3667061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inducible and neuronal nitric oxide synthases exert contrasting effects during rat intestinal recovery following fasting.
    Ito J; Uchida H; Machida N; Ohtake K; Saito Y; Kobayashi J
    Exp Biol Med (Maywood); 2017 Apr; 242(7):762-772. PubMed ID: 28195513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expressional regulation of key hepatic enzymes of intermediary metabolism in European seabass (Dicentrarchus labrax) during food deprivation and refeeding.
    Viegas I; Caballero-Solares A; Rito J; Giralt M; Pardal MA; Metón I; Jones JG; Baanante IV
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Aug; 174():38-44. PubMed ID: 24746983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basal and fasting/refeeding-regulated tissue levels of endogenous PPAR-alpha ligands in Zucker rats.
    Izzo AA; Piscitelli F; Capasso R; Marini P; Cristino L; Petrosino S; Di Marzo V
    Obesity (Silver Spring); 2010 Jan; 18(1):55-62. PubMed ID: 19521349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo effect of 2-deoxy-D-glucose on adenine nucleotide levels in the liver and skeletal muscle of rats.
    Torlińska T; Rutkowska D; Hryniewiecki T; Paluszak J
    Acta Physiol Pol; 1990; 41(7):76-84. PubMed ID: 2136320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Response of adenine nucleotide metabolism in the aged rat liver to fasting and succinate injections].
    Kaminskiĭ IuG; Kosenko EA; Kondrashova MN
    Biokhimiia; 1982 Apr; 47(4):654-9. PubMed ID: 7082695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of fasting, refeeding, and fasting with T3 administration on Na-K,ATPase in rat skeletal muscle.
    Matsumura M; Kuzuya N; Kawakami Y; Yamashita K
    Metabolism; 1992 Sep; 41(9):995-9. PubMed ID: 1325595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dietary manipulations (fasting, hypocaloric feeding, and subsequent refeeding) on rat muscle energetics as assessed by nuclear magnetic resonance spectroscopy.
    Pichard C; Vaughan C; Struk R; Armstrong RL; Jeejeebhoy KN
    J Clin Invest; 1988 Sep; 82(3):895-901. PubMed ID: 3138289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of energy metabolism by glucagon and adrenaline in perfused rat liver.
    Soboll S; Scholz R
    FEBS Lett; 1986 Sep; 205(1):109-12. PubMed ID: 3743764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy deficits in hepatocytes isolated from phenobarbital-treated or fasted rats and briefly exposed to halothane and hypoxia in vitro.
    Becker GL; Hensel P; Holland AD; Miletich DJ; Albrecht RF
    Anesthesiology; 1986 Oct; 65(4):379-84. PubMed ID: 3767035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustained hyperphagia in adolescent rats that experienced neonatal maternal separation.
    Ryu V; Lee JH; Yoo SB; Gu XF; Moon YW; Jahng JW
    Int J Obes (Lond); 2008 Sep; 32(9):1355-62. PubMed ID: 18645575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.