BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 10627321)

  • 1. Superiority of incremental trauma approach in experimental burst fracture studies.
    Panjabi MM; Hoffman H; Kato Y; Cholewicki J
    Clin Biomech (Bristol, Avon); 2000 Feb; 15(2):73-8. PubMed ID: 10627321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive loading of the spine may affect the spinal canal encroachment of burst fractures.
    Boisclair D; Mac-Thiong JM; Parent S; Petit Y
    J Spinal Disord Tech; 2013 Aug; 26(6):342-6. PubMed ID: 22274784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of single and incremental impact approaches for producing experimental thoracolumbar burst fractures.
    Wang XY; Dai LY; Xu HZ; Chi YL
    J Neurosurg Spine; 2007 Aug; 7(2):199-204. PubMed ID: 17688060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiographic parameters for evaluating the neurological spaces in experimental thoracolumbar burst fractures.
    Isomi T; Panjabi MM; Kato Y; Wang JL
    J Spinal Disord; 2000 Oct; 13(5):404-11. PubMed ID: 11052349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced transverse spinal area secondary to burst fractures: is there a relationship to neurologic injury?
    Rasmussen PA; Rabin MH; Mann DC; Perl JR; Lorenz MA; Vrbos LA
    J Neurotrauma; 1994 Dec; 11(6):711-20. PubMed ID: 7723070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional morphology of the spinal canal after endplate, wedge, and burst fractures.
    Kifune M; Panjabi MM; Liu W; Arand M; Vasavada A; Oxland T
    J Spinal Disord; 1997 Dec; 10(6):457-66. PubMed ID: 9438809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Importance of the cross-sectional area of the spinal canal in thoracolumbar and lumbar fractures. Is there any correlation between the degree of stenosis and neurological deficit?].
    Eberl R; Kaminski A; Müller EJ; Muhr G
    Orthopade; 2003 Oct; 32(10):859-64. PubMed ID: 14579017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of the burst fracture in the thoracolumbar spine. The effect of loading rate.
    Tran NT; Watson NA; Tencer AF; Ching RP; Anderson PA
    Spine (Phila Pa 1976); 1995 Sep; 20(18):1984-8. PubMed ID: 8578372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Canal and intervertebral foramen encroachments of a burst fracture: effects from the center of rotation.
    Panjabi MM; Kato Y; Hoffman H; Cholewicki J
    Spine (Phila Pa 1976); 2001 Jun; 26(11):1231-7. PubMed ID: 11389388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous remodeling of the spinal canal after conservative management of thoracolumbar burst fractures.
    de Klerk LW; Fontijne WP; Stijnen T; Braakman R; Tanghe HL; van Linge B
    Spine (Phila Pa 1976); 1998 May; 23(9):1057-60. PubMed ID: 9589546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal canal remodelling after stabilization of thoracolumbar burst fractures.
    Sjöström L; Jacobsson O; Karlström G; Pech P; Rauschning W
    Eur Spine J; 1994; 3(6):312-7. PubMed ID: 7866859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the risk factors for severity of neurologic status in 216 patients with thoracolumbar and lumbar burst fractures.
    Yugué I; Aono K; Shiba K; Ueta T; Maeda T; Mori E; Kawano O
    Spine (Phila Pa 1976); 2011 Sep; 36(19):1563-9. PubMed ID: 21245793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of bone retropulsed into the spinal canal in thoracolumbar vertebral body compression burst fractures. A prospective randomized comparative study between Harrington rods and two transpedicular devices.
    Vornanen MJ; Böstman OM; Myllynen PJ
    Spine (Phila Pa 1976); 1995 Aug; 20(15):1699-703. PubMed ID: 7482020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute thoracolumbar burst fractures: a new view of loading mechanisms.
    Langrana NA; Harten RD RD; Lin DC; Reiter MF; Lee CK
    Spine (Phila Pa 1976); 2002 Mar; 27(5):498-508. PubMed ID: 11880835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The significance of thoracolumbar spinal canal size in spinal cord injury patients.
    Vaccaro AR; Nachwalter RS; Klein GR; Sewards JM; Albert TJ; Garfin SR
    Spine (Phila Pa 1976); 2001 Feb; 26(4):371-6. PubMed ID: 11224884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can the interpedicular distance reliably assess the severity of thoracolumbar burst fractures?
    Caffaro MF; Avanzi O
    Spine (Phila Pa 1976); 2012 Feb; 37(4):E231-6. PubMed ID: 22333930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurologic recovery from thoracolumbar burst fractures: is it predicted by the amount of initial canal encroachment and kyphotic deformity?
    Dai LY; Wang XY; Jiang LS
    Surg Neurol; 2007 Mar; 67(3):232-7; discussion 238. PubMed ID: 17320624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonoperatively treated burst fractures of the thoracic and lumbar spine in adults: a 23- to 41-year follow-up.
    Moller A; Hasserius R; Redlund-Johnell I; Ohlin A; Karlsson MK
    Spine J; 2007; 7(6):701-7. PubMed ID: 17998129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic canal encroachment during thoracolumbar burst fractures.
    Panjabi MM; Kifune M; Wen L; Arand M; Oxland TR; Lin RM; Yoon WS; Vasavada A
    J Spinal Disord; 1995 Feb; 8(1):39-48. PubMed ID: 7711368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified posterior decompression for the management of thoracolumbar burst fractures with canal encroachment.
    Kong W; Sun Y; Hu J; Xu J
    J Spinal Disord Tech; 2010 Jul; 23(5):302-9. PubMed ID: 20075756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.