BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 10627478)

  • 41. Clinical, functional, and genetic characterization of chronic granulomatous disease in 89 Turkish patients.
    Köker MY; Camcıoğlu Y; van Leeuwen K; Kılıç SŞ; Barlan I; Yılmaz M; Metin A; de Boer M; Avcılar H; Patıroğlu T; Yıldıran A; Yeğin O; Tezcan I; Sanal Ö; Roos D
    J Allergy Clin Immunol; 2013 Nov; 132(5):1156-1163.e5. PubMed ID: 23910690
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel mutation at a probable heme-binding ligand in neutrophil cytochrome b558 in atypical X-linked chronic granulomatous disease.
    Tsuda M; Kaneda M; Sakiyama T; Inana I; Owada M; Kiryu C; Shiraishi T; Kakinuma K
    Hum Genet; 1998 Oct; 103(4):377-81. PubMed ID: 9856476
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Residual NADPH oxidase and survival in chronic granulomatous disease.
    Kuhns DB; Alvord WG; Heller T; Feld JJ; Pike KM; Marciano BE; Uzel G; DeRavin SS; Priel DA; Soule BP; Zarember KA; Malech HL; Holland SM; Gallin JI
    N Engl J Med; 2010 Dec; 363(27):2600-10. PubMed ID: 21190454
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular basis of autosomal recessive chronic granulomatous disease in iran.
    Teimourian S; de Boer M; Roos D
    J Clin Immunol; 2010 Jul; 30(4):587-92. PubMed ID: 20407811
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Detection of gp91-phox precursor protein in B-cell lines from patients with X-linked chronic granulomatous disease as an indicator for mutations impairing cytochrome b558 biosynthesis.
    Porter CD; Kuribayashi F; Parkar MH; Roos D; Kinnon C
    Biochem J; 1996 Apr; 315 ( Pt 2)(Pt 2):571-5. PubMed ID: 8615831
    [TBL] [Abstract][Full Text] [Related]  

  • 46. p21rac does not participate in the early interaction between p47-phox and cytochrome b558 that leads to phagocyte NADPH oxidase activation in vitro.
    Kleinberg ME; Malech HL; Mital DA; Leto TL
    Biochemistry; 1994 Mar; 33(9):2490-5. PubMed ID: 8117710
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monocyte/macrophage-specific NADPH oxidase contributes to antimicrobial host defense in X-CGD.
    Okura Y; Yamada M; Kuribayashi F; Kobayashi I; Ariga T
    J Clin Immunol; 2015 Feb; 35(2):158-67. PubMed ID: 25666294
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NADPH oxidase activity and cytochrome b558 content of human Epstein-Barr-virus-transformed B lymphocytes correlate with expression of genes encoding components of the oxidase system.
    Condino-Neto A; Newburger PE
    Arch Biochem Biophys; 1998 Dec; 360(2):158-64. PubMed ID: 9851826
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of putative second transmembrane region of Nox2 protein in the structural stability and electron transfer of the phagocytic NADPH oxidase.
    Picciocchi A; Debeurme F; Beaumel S; Dagher MC; Grunwald D; Jesaitis AJ; Stasia MJ
    J Biol Chem; 2011 Aug; 286(32):28357-69. PubMed ID: 21659519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assembly of the human neutrophil NADPH oxidase involves binding of p67phox and flavocytochrome b to a common functional domain in p47phox.
    De Leo FR; Ulman KV; Davis AR; Jutila KL; Quinn MT
    J Biol Chem; 1996 Jul; 271(29):17013-20. PubMed ID: 8663333
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crucial role of two potential cytosolic regions of Nox2, 191TSSTKTIRRS200 and 484DESQANHFAVHHDEEKD500, on NADPH oxidase activation.
    Li XJ; Grunwald D; Mathieu J; Morel F; Stasia MJ
    J Biol Chem; 2005 Apr; 280(15):14962-73. PubMed ID: 15684431
    [TBL] [Abstract][Full Text] [Related]  

  • 52. p47phox Phox homology domain regulates plasma membrane but not phagosome neutrophil NADPH oxidase activation.
    Li XJ; Marchal CC; Stull ND; Stahelin RV; Dinauer MC
    J Biol Chem; 2010 Nov; 285(45):35169-79. PubMed ID: 20817944
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular quality control machinery contributes to the leukocyte NADPH oxidase deficiency in chronic granulomatous disease.
    Lin SJ; Huang YF; Chen JY; Heyworth PG; Noack D; Wang JY; Lin CY; Chiang BL; Yang CM; Liu CC; Shieh CC
    Biochim Biophys Acta; 2002 Apr; 1586(3):275-86. PubMed ID: 11997079
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Novel CYBB Mutation in Chronic Granulomatous Disease in Iran.
    Tajik S; Badalzadeh M; Fazlollahi MR; Houshmand M; Zandieh F; Khandan S; Pourpak Z
    Iran J Allergy Asthma Immunol; 2016 Oct; 15(5):426-429. PubMed ID: 27917630
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification and functional characterization of two novel mutations in the α-helical loop (residues 484-503) of CYBB/gp91(phox) resulting in the rare X91(+) variant of chronic granulomatous disease.
    Boog B; Quach A; Costabile M; Smart J; Quinn P; Singh H; Gold M; Booker G; Choo S; Hii CS; Ferrante A
    Hum Mutat; 2012 Mar; 33(3):471-5. PubMed ID: 22125116
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel mutation in the CYBB gene resulting in an unexpected pattern of exon skipping and chronic granulomatous disease.
    Noack D; Heyworth PG; Curnutte JT; Rae J; Cross AR
    Biochim Biophys Acta; 1999 Aug; 1454(3):270-4. PubMed ID: 10452961
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional epitope on human neutrophil flavocytochrome b558.
    Burritt JB; Foubert TR; Baniulis D; Lord CI; Taylor RM; Mills JS; Baughan TD; Roos D; Parkos CA; Jesaitis AJ
    J Immunol; 2003 Jun; 170(12):6082-9. PubMed ID: 12794137
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular basis of interferon-gamma and lipopolysaccharide enhancement of phagocyte respiratory burst capability. Studies on the gene expression of several NADPH oxidase components.
    Cassatella MA; Bazzoni F; Flynn RM; Dusi S; Trinchieri G; Rossi F
    J Biol Chem; 1990 Nov; 265(33):20241-6. PubMed ID: 2173701
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PU.1 as an essential activator for the expression of gp91(phox) gene in human peripheral neutrophils, monocytes, and B lymphocytes.
    Suzuki S; Kumatori A; Haagen IA; Fujii Y; Sadat MA; Jun HL; Tsuji Y; Roos D; Nakamura M
    Proc Natl Acad Sci U S A; 1998 May; 95(11):6085-90. PubMed ID: 9600921
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Translocation of Rac correlates with NADPH oxidase activation. Evidence for equimolar translocation of oxidase components.
    Quinn MT; Evans T; Loetterle LR; Jesaitis AJ; Bokoch GM
    J Biol Chem; 1993 Oct; 268(28):20983-7. PubMed ID: 8407934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.