These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 10627533)
1. High rate of recombination throughout the human immunodeficiency virus type 1 genome. Jetzt AE; Yu H; Klarmann GJ; Ron Y; Preston BD; Dougherty JP J Virol; 2000 Feb; 74(3):1234-40. PubMed ID: 10627533 [TBL] [Abstract][Full Text] [Related]
2. Human immunodeficiency virus type 1 recombination: rate, fidelity, and putative hot spots. Zhuang J; Jetzt AE; Sun G; Yu H; Klarmann G; Ron Y; Preston BD; Dougherty JP J Virol; 2002 Nov; 76(22):11273-82. PubMed ID: 12388687 [TBL] [Abstract][Full Text] [Related]
3. The nature of human immunodeficiency virus type 1 strand transfers. Yu H; Jetzt AE; Ron Y; Preston BD; Dougherty JP J Biol Chem; 1998 Oct; 273(43):28384-91. PubMed ID: 9774465 [TBL] [Abstract][Full Text] [Related]
4. Recombination is required for efficient HIV-1 replication and the maintenance of viral genome integrity. Rawson JMO; Nikolaitchik OA; Keele BF; Pathak VK; Hu WS Nucleic Acids Res; 2018 Nov; 46(20):10535-10545. PubMed ID: 30307534 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms associated with the generation of biologically active human immunodeficiency virus type 1 particles from defective proviruses. Inoue M; Hoxie JA; Reddy MV; Srinivasan A; Reddy EP Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2278-82. PubMed ID: 2006168 [TBL] [Abstract][Full Text] [Related]
6. One retroviral RNA is sufficient for synthesis of viral DNA. Jones JS; Allan RW; Temin HM J Virol; 1994 Jan; 68(1):207-16. PubMed ID: 8254730 [TBL] [Abstract][Full Text] [Related]
7. High rates of human immunodeficiency virus type 1 recombination: near-random segregation of markers one kilobase apart in one round of viral replication. Rhodes T; Wargo H; Hu WS J Virol; 2003 Oct; 77(20):11193-200. PubMed ID: 14512567 [TBL] [Abstract][Full Text] [Related]
8. Heterologous human immunodeficiency virus type 1 lentiviral vectors packaging a simian immunodeficiency virus-derived genome display a specific postentry transduction defect in dendritic cells. Goujon C; Jarrosson-Wuilleme L; Bernaud J; Rigal D; Darlix JL; Cimarelli A J Virol; 2003 Sep; 77(17):9295-304. PubMed ID: 12915545 [TBL] [Abstract][Full Text] [Related]
9. Generation of hybrid human immunodeficiency virus by homologous recombination. Srinivasan A; York D; Jannoun-Nasr R; Kalyanaraman S; Swan D; Benson J; Bohan C; Luciw PA; Schnoll S; Robinson RA Proc Natl Acad Sci U S A; 1989 Aug; 86(16):6388-92. PubMed ID: 2474834 [TBL] [Abstract][Full Text] [Related]
10. Mutations in both the U5 region and the primer-binding site influence the selection of the tRNA used for the initiation of HIV-1 reverse transcription. Kang SM; Wakefield JK; Morrow CD Virology; 1996 Aug; 222(2):401-14. PubMed ID: 8806524 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the viral determinants underlying replication kinetics and cellular tropism of human immunodeficiency virus. Nagashunmugam T; Velpandi A; Otsuka T; Cartas M; Srinivasan A Pathobiology; 1992; 60(4):234-45. PubMed ID: 1388721 [TBL] [Abstract][Full Text] [Related]
12. Stabilization of the U5-leader stem in the HIV-1 RNA genome affects initiation and elongation of reverse transcription. Beerens N; Groot F; Berkhout B Nucleic Acids Res; 2000 Nov; 28(21):4130-7. PubMed ID: 11058109 [TBL] [Abstract][Full Text] [Related]
13. Genetic recombination of human immunodeficiency virus type 1 in one round of viral replication: effects of genetic distance, target cells, accessory genes, and lack of high negative interference in crossover events. Rhodes TD; Nikolaitchik O; Chen J; Powell D; Hu WS J Virol; 2005 Feb; 79(3):1666-77. PubMed ID: 15650192 [TBL] [Abstract][Full Text] [Related]
14. Evidence for preferential copackaging of Moloney murine leukemia virus genomic RNAs transcribed in the same chromosomal site. Kharytonchyk SA; Kireyeva AI; Osipovich AB; Fomin IK Retrovirology; 2005 Jan; 2():3. PubMed ID: 15656910 [TBL] [Abstract][Full Text] [Related]
15. Superinfection of defective human immunodeficiency virus type 1 with different subtypes of wild-type virus efficiently produces infectious variants with the initial viral phenotypes by complementation followed by recombination. Iwabu Y; Mizuta H; Kawase M; Kameoka M; Goto T; Ikuta K Microbes Infect; 2008 Apr; 10(5):504-13. PubMed ID: 18403230 [TBL] [Abstract][Full Text] [Related]
16. Derivation of a biologically contained replication system for human immunodeficiency virus type 1. Chen H; Boyle TJ; Malim MH; Cullen BR; Lyerly HK Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7678-82. PubMed ID: 1502183 [TBL] [Abstract][Full Text] [Related]
17. Defective HIV-1 quasispecies in the form of multiply drug-resistant proviral DNA within cells can be rescued by superinfection with different subtype variants of HIV-1 and by HIV-2 and SIV. Quan Y; Xu H; Wainberg MA J Antimicrob Chemother; 2014 Jan; 69(1):21-7. PubMed ID: 23963235 [TBL] [Abstract][Full Text] [Related]
18. Human immunodeficiency virus-1 tat- and tat/nef-defective genomes containing HIV-regulated diphtheria toxin A chain gene inhibit HIV replication. Brdar B; Matulić M; Rubelj I; Ivanković M; Reich E Croat Med J; 2002 Oct; 43(5):591-7. PubMed ID: 12402403 [TBL] [Abstract][Full Text] [Related]
19. A structured RNA motif is involved in correct placement of the tRNA(3)(Lys) primer onto the human immunodeficiency virus genome. Beerens N; Klaver B; Berkhout B J Virol; 2000 Mar; 74(5):2227-38. PubMed ID: 10666253 [TBL] [Abstract][Full Text] [Related]
20. Recombination between human immunodeficiency viruses (HIV) type 1 and 2 results in generation of defective hybrid viruses. Ranganathan PN; Srinivasan A Biochem Biophys Res Commun; 1993 May; 193(1):311-7. PubMed ID: 8503921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]