BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 10627831)

  • 1. Formation of biogenic amine in mayonnaise, herring and tuna fish salad by lactobacilli.
    Leuschner RG; Hammes WP
    Int J Food Sci Nutr; 1999 May; 50(3):159-64. PubMed ID: 10627831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved screening procedure for biogenic amine production by lactic acid bacteria.
    Bover-Cid S; Holzapfel WH
    Int J Food Microbiol; 1999 Dec; 53(1):33-41. PubMed ID: 10598112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of enhanced proteolysis on formation of biogenic amines by lactobacilli during Gouda cheese ripening.
    Leuschner RG; Kurihara R; Hammes WP
    Int J Food Microbiol; 1998 Oct; 44(1-2):15-20. PubMed ID: 9849780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogenic amine production in grass, maize and total mixed ration silages inoculated with Lactobacillus casei or Lactobacillus buchneri.
    Nishino N; Hattori H; Wada H; Touno E
    J Appl Microbiol; 2007 Aug; 103(2):325-32. PubMed ID: 17650192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histamine and biogenic amine production by Morganella morganii isolated from temperature-abused albacore.
    Kim SH; Ben-Gigirey B; Barros-Velázquez J; Price RJ; An H
    J Food Prot; 2000 Feb; 63(2):244-51. PubMed ID: 10678431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of on-board and dockside handling on the formation of biogenic amines in mahimahi (Coryphaena hippurus), skipjack tuna (Katsuwonus pelamis), and yellowfin tuna (Thunnus albacares).
    Staruszkiewicz WF; Barnett JD; Rogers PL; Benner RA; Wong LL; Cook J
    J Food Prot; 2004 Jan; 67(1):134-41. PubMed ID: 14717363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening of biogenic amine production by lactic acid bacteria isolated from grape must and wine.
    Moreno-Arribas MV; Polo MC; Jorganes F; Muñoz R
    Int J Food Microbiol; 2003 Jul; 84(1):117-23. PubMed ID: 12781962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the interaction between a low tyramine-producing Lactobacillus and proteolytic staphylococci on biogenic amine production during ripening and storage of dry sausages.
    Bover-Cid S; Izquierdo-Pulido M; Vidal-Carou MC
    Int J Food Microbiol; 2001 Apr; 65(1-2):113-23. PubMed ID: 11322694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro synthesis of biogenic amines by Brochothrix thermosphacta isolates from meat and meat products and the influence of other microorganisms.
    Nowak A; Czyzowska A
    Meat Sci; 2011 Jul; 88(3):571-4. PubMed ID: 21382674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of biogenic amine formation using a negative amino acid-decarboxylase starter culture for fermentation of Fuet sausages.
    Bover-Cid S; Hugas M; Izquierdo-Pulido M; Vidal-Carou MC
    J Food Prot; 2000 Feb; 63(2):237-43. PubMed ID: 10678430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of ripening and storage conditions on the distribution of tyramine, putrescine and cadaverine in Edam-cheese.
    Bunková L; Bunka F; Mantlová G; Cablová A; Sedlácek I; Svec P; Pachlová V; Krácmar S
    Food Microbiol; 2010 Oct; 27(7):880-8. PubMed ID: 20688229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring volatile and nonvolatile amines in dried and salted roes of tuna (Thunnus thynnus L.) during manufacture and storage.
    Periago MJ; Rodrigo J; Ros G; Rodríguez-Jérez JJ; Hernández-Herrero M
    J Food Prot; 2003 Feb; 66(2):335-40. PubMed ID: 12597499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence of lactic acid bacteria and biogenic amines in biologically aged wines.
    Moreno-Arribas MV; Polo MC
    Food Microbiol; 2008 Oct; 25(7):875-81. PubMed ID: 18721676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The formation of biogenic amines by fermentation organisms.
    Straub BW; Kicherer M; Schilcher SM; Hammes WP
    Z Lebensm Unters Forsch; 1995 Jul; 201(1):79-82. PubMed ID: 7571871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histamine and cadaverine production by bacteria isolated from fresh and frozen albacore (Thunnus alalunga).
    Ben-Gigirey B; Vieites Baaptista de Sousa JM; Villa TG; Barros-Velazquez J
    J Food Prot; 1999 Aug; 62(8):933-9. PubMed ID: 10456749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid-decarboxylase activity of bacteria isolated from fermented pork sausages.
    Bover-Cid S; Hugas M; Izquierdo-Pulido M; Vidal-Carou MC
    Int J Food Microbiol; 2001 Jun; 66(3):185-9. PubMed ID: 11428577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of trans- and cis-urocanic acid in relation to histamine, putrescine, and cadaverine contents in tuna (Auxis Thazard) at different storage temperatures.
    Zare D; Muhammad K; Bejo MH; Ghazali HM
    J Food Sci; 2015 Feb; 80(2):T479-83. PubMed ID: 25586500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of biogenic amines in commercial tuna fish: Influence of species, capture method, and processing on quality and safety.
    Bita S; Sharifian S
    Food Chem; 2024 Mar; 435():137576. PubMed ID: 37774619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Storage Time and Temperature Effects on Histamine Production in Tuna Salad Preparations.
    McCarthy S; Bjornsdottir-Butler K; Benner R
    J Food Prot; 2015 Jul; 78(7):1343-9. PubMed ID: 26197286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid decarboxylation by Lactobacillus curvatus CTC273 affected by the pH and glucose availability.
    Cid SB; Miguélez-Arrizado MJ; Becker B; Holzapfel WH; Vidal-Carou MC
    Food Microbiol; 2008 Apr; 25(2):269-77. PubMed ID: 18206769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.