These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1062793)

  • 1. X-ray diffraction of actively shortening muscle.
    Podolsky RJ; St Onge H; Yu L; Lymn RW
    Proc Natl Acad Sci U S A; 1976 Mar; 73(3):813-7. PubMed ID: 1062793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting the equatorial X-ray diffraction pattern from contracting frog skeletal muscle.
    Tanaka H; Hashizume H; Sugi H
    Adv Exp Med Biol; 1984; 170():193-202. PubMed ID: 6611027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study of the mechanics and small-angle equatorial x-ray pattern of the frog skeletal muscle during transition and rigor at different temperatures].
    Savel'ev VB
    Biofizika; 1986; 31(6):1027-32. PubMed ID: 3492220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-bridge attachment and stiffness during isotonic shortening of intact single muscle fibers.
    Griffiths PJ; Ashley CC; Bagni MA; MaƩda Y; Cecchi G
    Biophys J; 1993 Apr; 64(4):1150-60. PubMed ID: 8494976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equatorial x-ray diffraction from single skinned rabbit psoas fibers at various degrees of activation. Changes in intensities and lattice spacing.
    Brenner B; Yu LC
    Biophys J; 1985 Nov; 48(5):829-34. PubMed ID: 4074840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray diffraction evidence for cross-bridge formation in relaxed muscle fibers at various ionic strengths.
    Brenner B; Yu LC; Podolsky RJ
    Biophys J; 1984 Sep; 46(3):299-306. PubMed ID: 6487731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural changes during contraction in vertebrate skeletal muscle as studied by time-resolved X-ray diffraction technique.
    Sugi H; Tanaka H; Wakabayashi K; Kobayashi T; Iwamoto H; Hamanaka T; Mitsui T; Amemiya Y
    Biomed Biochim Acta; 1986; 45(1-2):S15-22. PubMed ID: 3485970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equatorial x-ray reflections from contracting muscle after an applied stretch.
    Yagi N; Matsubara I
    Pflugers Arch; 1977 Nov; 372(1):113-4. PubMed ID: 563580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An X-ray diffraction study of frog skeletal muscle during shortening near the maximum velocity.
    Yagi N; Takemori S; Watanabe M
    J Mol Biol; 1993 Jun; 231(3):668-77. PubMed ID: 8515444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural changes in the actomyosin cross-bridges associated with force generation.
    Brenner B; Yu LC
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):5252-6. PubMed ID: 8506374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [High time resolution x-ray study of the dynamics of a single muscle contraction].
    Vazina AA; Zheleznaia LA; Matiushin AM; Mevkh NG; Rashin AA
    Biofizika; 1979; 24(3):495-500. PubMed ID: 465555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of thick filament structure during contraction of frog striated muscle.
    Yagi N; O'Brien EJ; Matsubara I
    Biophys J; 1981 Jan; 33(1):121-37. PubMed ID: 6974013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of pressure on equatorial x-ray fiber diffraction from skeletal muscle fibers.
    Knight PJ; Fortune NS; Geeves MA
    Biophys J; 1993 Aug; 65(2):814-22. PubMed ID: 8218906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rigor-force producing cross-bridges in skeletal muscle fibers activated by a substoichiometric amount of ATP.
    Yamada T; Takezawa Y; Iwamoto H; Suzuki S; Wakabayashi K
    Biophys J; 2003 Sep; 85(3):1741-53. PubMed ID: 12944289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved X-ray diffraction studies of cross-bridge movement and their interpretation.
    Huxley HE
    Adv Exp Med Biol; 1984; 170():161-75. PubMed ID: 6741693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved x-ray diffraction studies on the intensity changes of the 5.9 and 5.1 nm actin layer lines from frog skeletal muscle during an isometric tetanus using synchrotron radiation.
    Wakabayashi K; Tanaka H; Amemiya Y; Fujishima A; Kobayashi T; Hamanaka T; Sugi H; Mitsui T
    Biophys J; 1985 Jun; 47(6):847-50. PubMed ID: 3874653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Relation between the intensity of low-angle equatorial reflections of x-ray diffraction patterns of frog skeletal muscle and sarcomere length].
    Savel'ev VB
    Biofizika; 1985; 30(5):873-7. PubMed ID: 3876850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Millisecond time-resolved changes in x-ray reflections from contracting muscle during rapid mechanical transients, recorded using synchrotron radiation.
    Huxley HE; Simmons RM; Faruqi AR; Kress M; Bordas J; Koch MH
    Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2297-301. PubMed ID: 6972534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myosin subfragment-1 attachment to actin. Expected effect on equatorial reflections.
    Lymn RW
    Biophys J; 1978 Jan; 21(1):93-8. PubMed ID: 620080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.