These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1062793)

  • 21. Structural changes of cross-bridges on transition from isometric to shortening state in frog skeletal muscle.
    Yagi N; Iwamoto H; Inoue K
    Biophys J; 2006 Dec; 91(11):4110-20. PubMed ID: 16980365
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Change of low-angle X-ray diffraction in the process of the transition of striated muscle into rigor].
    Savel'ev VB
    Biofizika; 1982; 27(6):1044-8. PubMed ID: 7159614
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of thin filament activation on the attachment of weak binding cross-bridges: A two-dimensional x-ray diffraction study on single muscle fibers.
    Kraft T; Xu S; Brenner B; Yu LC
    Biophys J; 1999 Mar; 76(3):1494-513. PubMed ID: 10049330
    [TBL] [Abstract][Full Text] [Related]  

  • 24. "Crystalline" myosin cross-bridge array in relaxed bony fish muscle. Low-angle x-ray diffraction from plaice fin muscle and its interpretation.
    Harford J; Squire J
    Biophys J; 1986 Jul; 50(1):145-55. PubMed ID: 3730499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Localization of minor proteins and structural changes in the myosin filaments of vertebrate striated muscle].
    Lednev VV; Srebnitskaia LK; Kornev AN; Khromov AS; Malinchik SB
    Biofizika; 1981; 26(4):739-48. PubMed ID: 6974572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Muscle force is generated by myosin heads stereospecifically attached to actin.
    Bershitsky SY; Tsaturyan AK; Bershitskaya ON; Mashanov GI; Brown P; Burns R; Ferenczi MA
    Nature; 1997 Jul; 388(6638):186-90. PubMed ID: 9217160
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of cross-bridge affinity for MgGTP by Ca2+ in skinned fibers of rabbit psoas muscle.
    Frisbie SM; Chalovich JM; Brenner B; Yu LC
    Biophys J; 1997 May; 72(5):2255-61. PubMed ID: 9129828
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural changes in the myosin filament and cross-bridges during active force development in single intact frog muscle fibres: stiffness and X-ray diffraction measurements.
    Brunello E; Bianco P; Piazzesi G; Linari M; Reconditi M; Panine P; Narayanan T; Helsby WI; Irving M; Lombardi V
    J Physiol; 2006 Dec; 577(Pt 3):971-84. PubMed ID: 16990403
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A time-resolved X-ray diffraction study of muscle during twitch.
    Matsubara I; Yagi N
    J Physiol; 1978 May; 278():297-307. PubMed ID: 307597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. X-ray diffraction observations of chemically skinned frog skeletal muscle processed by an improved method.
    Magid A; Reedy MK
    Biophys J; 1980 Apr; 30(1):27-40. PubMed ID: 6973364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of synchrotron radiation in time-resolved X-ray diffraction studies of myosin layer-line reflections during muscle contraction.
    Huxley HE; Faruqi AR; Bordas J; Koch MH; Milch JR
    Nature; 1980 Mar; 284(5752):140-3. PubMed ID: 7189013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-resolved X-ray diffraction by skinned skeletal muscle fibers during activation and shortening.
    Hoskins BK; Ashley CC; Rapp G; Griffiths PJ
    Biophys J; 2001 Jan; 80(1):398-414. PubMed ID: 11159411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Equatorial x-ray intensities and isometric force levels in frog sartorius muscle.
    Yu LP; Hartt JE; Podolsky RJ
    J Mol Biol; 1979 Jul; 132(1):53-67. PubMed ID: 316011
    [No Abstract]   [Full Text] [Related]  

  • 34. Time-resolved changes in equatorial x-ray diffraction and stiffness during rise of tetanic tension in intact length-clamped single muscle fibers.
    Cecchi G; Griffiths PJ; Bagni MA; Ashley CC; Maeda Y
    Biophys J; 1991 Jun; 59(6):1273-83. PubMed ID: 1873464
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cross-bridge movements during a slow length change of active muscle.
    Yagi N; Matsubara I
    Biophys J; 1984 Mar; 45(3):611-4. PubMed ID: 6608963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intensity changes of actin-based layer lines from frog skeletal muscles during an isometric contraction.
    Wakabayashi K; Ueno Y; Amemiya Y; Tanaka H
    Adv Exp Med Biol; 1988; 226():353-67. PubMed ID: 3261487
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time-resolved x-ray study of effect of sinusoidal length change on tetanized frog muscle.
    Wakabayashi K; Tanaka H; Kobayashi T; Amemiya Y; Hamanaka T; Nishizawa S; Sugi H; Mitsui T
    Biophys J; 1986 Feb; 49(2):581-4. PubMed ID: 3485452
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Direct proof of the existence of Ca2+-induced structural changes in miosin-containing thick filaments of vertebrate skeletal muscles].
    Lednev VV; Srebnitskaia LK; Kornev AN; Malinchik SB
    Biofizika; 1982; 27(3):493-7. PubMed ID: 6980017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effect of muscle storage and stimulation on the intensity of Z-reflection of its equatorial x-ray pattern].
    Savel'ev VB
    Biofizika; 1986; 31(4):720-1. PubMed ID: 3756237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. X-RAY DIFFRACTION STUDIES ON FROG MUSCLES.
    Spiegel-Adolf M; Henny GC; Ashkenaz EW
    J Gen Physiol; 1944 Nov; 28(2):151-78. PubMed ID: 19873411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.