These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1062793)

  • 61. Effect of stretch on the equatorial X-ray diffraction pattern from frog skeletal muscle in rigor.
    Tanaka H; Sugi H; Hashizume H
    Adv Exp Med Biol; 1984; 170():203-5. PubMed ID: 6741696
    [No Abstract]   [Full Text] [Related]  

  • 62. Constancy of axial spacings in frog sartorius muscle during contraction.
    Huxley HE; Brown W; Holmes KC
    Nature; 1965 Jun; 206(991):1358. PubMed ID: 5838248
    [No Abstract]   [Full Text] [Related]  

  • 63. Stepwise sarcomere shortening: analysis by high-speed cinemicrography.
    Delay MJ; Ishide N; Jacobson RC; Pollack GH; Tirosh R
    Science; 1981 Sep; 213(4515):1523-5. PubMed ID: 7280674
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The equatorial x-ray diffraction patterns of crustacean striated muscles.
    Yagi N; Matsubara I
    J Mol Biol; 1977 Dec; 117(3):797-803. PubMed ID: 609102
    [No Abstract]   [Full Text] [Related]  

  • 65. X-ray diffraction from living striated muscle during contraction.
    Elliott GF; Lowy J; Millman BM
    Nature; 1965 Jun; 206(991):1357-8. PubMed ID: 5838247
    [No Abstract]   [Full Text] [Related]  

  • 66. High spatial resolution position sensitive counter for use in muscle diffraction.
    Faruqi AR
    J Phys E; 1975 Aug; 8(8):633-5. PubMed ID: 1142115
    [No Abstract]   [Full Text] [Related]  

  • 67. Structural difference between resting and rigor muscle; evidence from intensity changes in the lowangle equatorial x-ray diagram.
    Huxley HE
    J Mol Biol; 1968 Nov; 37(3):507-20. PubMed ID: 5719221
    [No Abstract]   [Full Text] [Related]  

  • 68. X-ray diffraction from contracting molluscan muscle.
    Millman BM; Elliott GF
    Nature; 1965 May; 206(4986):824-5. PubMed ID: 5840134
    [No Abstract]   [Full Text] [Related]  

  • 69. Low-angle x-ray diffraction studies of living striated muscle during contraction.
    Elliott GF; Lowy J; Millman BM
    J Mol Biol; 1967 Apr; 25(1):31-45. PubMed ID: 6034095
    [No Abstract]   [Full Text] [Related]  

  • 70. Cross-bridge movement during muscle contraction.
    Haselgrove JC; Stewart M; Huxley HE
    Nature; 1976 Jun; 261(5561):606-8. PubMed ID: 934304
    [No Abstract]   [Full Text] [Related]  

  • 71. The Lotmar-Picken x ray diffraction diagram of muscle.
    BEAR RS; CANNAN CM
    Nature; 1951 Oct; 168(4277):684-5. PubMed ID: 14882315
    [No Abstract]   [Full Text] [Related]  

  • 72. Evidence for a phase transition in muscle contraction.
    HOEVE CA; WILLIS YA; MARTIN DJ
    Biochemistry; 1963; 2():282-6. PubMed ID: 13963871
    [No Abstract]   [Full Text] [Related]  

  • 73. Effect of Active Lengthening and Shortening on Small-Angle X-ray Reflections in Skinned Skeletal Muscle Fibres.
    Joumaa V; Smith IC; Fukutani A; Leonard TR; Ma W; Mijailovich SM; Irving TC; Herzog W
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445232
    [TBL] [Abstract][Full Text] [Related]  

  • 74. X-ray Diffraction Studies on the Structural Origin of Dynamic Tension Recovery Following Ramp-Shaped Releases in High-Ca Rigor Muscle Fibers.
    Sugi H; Yamaguchi M; Ohno T; Okuyama H; Yagi N
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32069889
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Theory of muscle contraction mechanism with cooperative interaction among crossbridges.
    Mitsui T; Ohshima H
    Biophysics (Nagoya-shi); 2012; 8():27-39. PubMed ID: 27857605
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Revisiting Frank-Starling: regulatory light chain phosphorylation alters the rate of force redevelopment (ktr ) in a length-dependent fashion.
    Toepfer CN; West TG; Ferenczi MA
    J Physiol; 2016 Sep; 594(18):5237-54. PubMed ID: 27291932
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A post-MI power struggle: adaptations in cardiac power occur at the sarcomere level alongside MyBP-C and RLC phosphorylation.
    Toepfer CN; Sikkel MB; Caorsi V; Vydyanath A; Torre I; Copeland O; Lyon AR; Marston SB; Luther PK; Macleod KT; West TG; Ferenczi MA
    Am J Physiol Heart Circ Physiol; 2016 Aug; 311(2):H465-75. PubMed ID: 27233767
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Myosin binding protein-C phosphorylation is the principal mediator of protein kinase A effects on thick filament structure in myocardium.
    Colson BA; Patel JR; Chen PP; Bekyarova T; Abdalla MI; Tong CW; Fitzsimons DP; Irving TC; Moss RL
    J Mol Cell Cardiol; 2012 Nov; 53(5):609-16. PubMed ID: 22850286
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Remarks on muscle contraction mechanism II. Isometric tension transient and isotonic velocity transient.
    Mitsui T; Takai N; Ohshima H
    Int J Mol Sci; 2011; 12(3):1697-726. PubMed ID: 21673917
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Remarks on muscle contraction mechanism.
    Mitsui T; Ohshima H
    Int J Mol Sci; 2008 May; 9(5):872-904. PubMed ID: 19325791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.