These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 10629176)

  • 1. Isolation of the MIG1 gene from Candida albicans and effects of its disruption on catabolite repression.
    Zaragoza O; Rodríguez C; Gancedo C
    J Bacteriol; 2000 Jan; 182(2):320-6. PubMed ID: 10629176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1.
    Murad AM; d'Enfert C; Gaillardin C; Tournu H; Tekaia F; Talibi D; Marechal D; Marchais V; Cottin J; Brown AJ
    Mol Microbiol; 2001 Nov; 42(4):981-93. PubMed ID: 11737641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A zinc finger protein from Candida albicans is involved in sucrose utilization.
    Kelly R; Kwon-Chung KJ
    J Bacteriol; 1992 Jan; 174(1):222-32. PubMed ID: 1729210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of Candida albicans Mig1 and Mig2 in glucose repression, pathogenicity traits, and SNF1 essentiality.
    Lagree K; Woolford CA; Huang MY; May G; McManus CJ; Solis NV; Filler SG; Mitchell AP
    PLoS Genet; 2020 Jan; 16(1):e1008582. PubMed ID: 31961865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae.
    Zaragoza O; Vincent O; Gancedo JM
    Biochem J; 2001 Oct; 359(Pt 1):193-201. PubMed ID: 11563983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae].
    Cai Y; Qi X; Qi Q; Lin Y; Wang Z; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):54-67. PubMed ID: 29380571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae.
    DeVit MJ; Johnston M
    Curr Biol; 1999 Nov; 9(21):1231-41. PubMed ID: 10556086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional domains in the Mig1 repressor.
    Ostling J; Carlberg M; Ronne H
    Mol Cell Biol; 1996 Mar; 16(3):753-61. PubMed ID: 8622676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alleviation of glucose repression of maltose metabolism by MIG1 disruption in Saccharomyces cerevisiae.
    Klein CJ; Olsson L; Rønnow B; Mikkelsen JD; Nielsen J
    Appl Environ Microbiol; 1996 Dec; 62(12):4441-9. PubMed ID: 8953715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae.
    Lutfiyya LL; Iyer VR; DeRisi J; DeVit MJ; Brown PO; Johnston M
    Genetics; 1998 Dec; 150(4):1377-91. PubMed ID: 9832517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site.
    Wu J; Trumbly RJ
    Yeast; 1998 Aug; 14(11):985-1000. PubMed ID: 9730278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and sequence of the MIG1 homologue from the yeast Candida utilis.
    Delfin J; Perdomo W; García B; Menendez J
    Yeast; 2001 May; 18(7):597-603. PubMed ID: 11329170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae.
    Treitel MA; Kuchin S; Carlson M
    Mol Cell Biol; 1998 Nov; 18(11):6273-80. PubMed ID: 9774644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The MIG1 repressor from Kluyveromyces lactis: cloning, sequencing and functional analysis in Saccharomyces cerevisiae.
    Cassart JP; Georis I; Ostling J; Ronne H; Vandenhaute J
    FEBS Lett; 1995 Sep; 371(2):191-4. PubMed ID: 7672126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silencing MIG1 in Saccharomyces cerevisiae: effects of antisense MIG1 expression and MIG1 gene disruption.
    Olsson L; Larsen ME; Rønnow B; Mikkelsen JD; Nielsen J
    Appl Environ Microbiol; 1997 Jun; 63(6):2366-71. PubMed ID: 9172357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Suppressor Mutation in the β-Subunit Kis1 Restores Functionality of the SNF1 Complex in
    Ramírez-Zavala B; Mottola A; Krüger I; Morschhäuser J
    mSphere; 2021 Dec; 6(6):e0092921. PubMed ID: 34908458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple phosphorylation sites regulate the activity of the repressor Mig1 in
    Ramírez-Zavala B; Betsova D; Schwanfelder S; Krüger I; Mottola A; Krüger T; Kniemeyer O; Brakhage AA; Morschhäuser J
    mSphere; 2023 Dec; 8(6):e0054623. PubMed ID: 38010000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MIG1 overexpression causes flocculation in Saccharomyces cerevisiae.
    Shankar CS; Ramakrishnan MS; Umesh-Kumar S
    Microbiology (Reading); 1996 Sep; 142 ( Pt 9)():2663-7. PubMed ID: 8828236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein.
    Treitel MA; Carlson M
    Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3132-6. PubMed ID: 7724528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis in three fungi reveals structurally and functionally conserved regions in the Mig1 repressor.
    Cassart JP; Ostling J; Ronne H; Vandenhaute J
    Mol Gen Genet; 1997 Jun; 255(1):9-18. PubMed ID: 9230894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.