These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 10631047)
21. The distribution of Elongation Factor-1 Alpha (EF-1alpha), Elongation Factor-Like (EFL), and a non-canonical genetic code in the ulvophyceae: discrete genetic characters support a consistent phylogenetic framework. Gile GH; Novis PM; Cragg DS; Zuccarello GC; Keeling PJ J Eukaryot Microbiol; 2009; 56(4):367-72. PubMed ID: 19602082 [TBL] [Abstract][Full Text] [Related]
22. Utility of the nuclear protein-coding gene, elongation factor-1 gamma (EF-1gamma), for spider systematics, emphasizing family level relationships of tarantulas and their kin (Araneae: Mygalomorphae). Ayoub NA; Garb JE; Hedin M; Hayashi CY Mol Phylogenet Evol; 2007 Feb; 42(2):394-409. PubMed ID: 16971146 [TBL] [Abstract][Full Text] [Related]
23. Phylogeny of the genus Aleochara inferred from mitochondrial cytochrome oxidase sequences (Coleoptera: Staphylinidae). Maus C; Peschke K; Dobler S Mol Phylogenet Evol; 2001 Feb; 18(2):202-16. PubMed ID: 11161756 [TBL] [Abstract][Full Text] [Related]
24. Phylogeny and molecular evolution of the tribe Harpalini (Coleoptera, Carabidae) inferred from mitochondrial cytochrome-oxidase I. Martínez-Navarro EM; Galián J; Serrano J Mol Phylogenet Evol; 2005 Apr; 35(1):127-46. PubMed ID: 15737587 [TBL] [Abstract][Full Text] [Related]
25. The protistan origins of animals and fungi. Steenkamp ET; Wright J; Baldauf SL Mol Biol Evol; 2006 Jan; 23(1):93-106. PubMed ID: 16151185 [TBL] [Abstract][Full Text] [Related]
26. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Inward DJ; Vogler AP; Eggleton P Mol Phylogenet Evol; 2007 Sep; 44(3):953-67. PubMed ID: 17625919 [TBL] [Abstract][Full Text] [Related]
27. Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Kroon LP; Bakker FT; van den Bosch GB; Bonants PJ; Flier WG Fungal Genet Biol; 2004 Aug; 41(8):766-82. PubMed ID: 15219561 [TBL] [Abstract][Full Text] [Related]
28. Higher-level phylogeny of the Therevidae (Diptera: insecta) based on 28S ribosomal and elongation factor-1 alpha gene sequences. Yang L; Wiegmann BM; Yeates DK; Irwin ME Mol Phylogenet Evol; 2000 Jun; 15(3):440-51. PubMed ID: 10860652 [TBL] [Abstract][Full Text] [Related]
29. Phylogenetic analysis of Myriapoda using three nuclear protein-coding genes. Regier JC; Wilson HM; Shultz JW Mol Phylogenet Evol; 2005 Jan; 34(1):147-58. PubMed ID: 15579388 [TBL] [Abstract][Full Text] [Related]
31. Systematics of the lizard family pygopodidae with implications for the diversification of Australian temperate biotas. Jennings WB; Pianka ER; Donnellan S Syst Biol; 2003 Dec; 52(6):757-80. PubMed ID: 14668116 [TBL] [Abstract][Full Text] [Related]
32. Phylogenetic relationships of Middle American cichlids (Cichlidae, Heroini) based on combined evidence from nuclear genes, mtDNA, and morphology. Rícan O; Zardoya R; Doadrio I Mol Phylogenet Evol; 2008 Dec; 49(3):941-57. PubMed ID: 18725305 [TBL] [Abstract][Full Text] [Related]
33. The perils of using host relationships in parasite taxonomy: phylogeny of the Degeeriella complex. Johnson KP; Weckstein JD; Witt CC; Faucett RC; Moyle RG Mol Phylogenet Evol; 2002 May; 23(2):150-7. PubMed ID: 12069547 [TBL] [Abstract][Full Text] [Related]
34. Phylogenetic relationships of Iberian dung beetles (Coleoptera: scarabaeinae): insights on the evolution of nesting behavior. Villalba S; Lobo JM; Martín-Piera F; Zardoya R J Mol Evol; 2002 Jul; 55(1):116-26. PubMed ID: 12165849 [TBL] [Abstract][Full Text] [Related]
35. Phylogeny of colletid bees (Hymenoptera: Colletidae) inferred from four nuclear genes. Almeida EA; Danforth BN Mol Phylogenet Evol; 2009 Feb; 50(2):290-309. PubMed ID: 18992829 [TBL] [Abstract][Full Text] [Related]
36. Phylogeny and life history evolution of the genus Chrysoritis within the Aphnaeini (Lepidoptera: Lycaenidae), inferred from mitochondrial cytochrome oxidase I sequences. Rand DB; Heath A; Suderman T; Pierce NE Mol Phylogenet Evol; 2000 Oct; 17(1):85-96. PubMed ID: 11020307 [TBL] [Abstract][Full Text] [Related]
37. Phylogenetic relationships within the genus Tetrahymena inferred from the cytochrome c oxidase subunit 1 and the small subunit ribosomal RNA genes. Chantangsi C; Lynn DH Mol Phylogenet Evol; 2008 Dec; 49(3):979-87. PubMed ID: 18929672 [TBL] [Abstract][Full Text] [Related]
38. Evolutionary relationships among species of Puccinia and Uromyces (Pucciniaceae, Uredinales) inferred from partial protein coding gene phylogenies. van der Merwe M; Ericson L; Walker J; Thrall PH; Burdon JJ Mycol Res; 2007 Feb; 111(Pt 2):163-75. PubMed ID: 17324755 [TBL] [Abstract][Full Text] [Related]
39. Inference of the phylogenetic position of oxymonads based on nine genes: support for metamonada and excavata. Hampl V; Horner DS; Dyal P; Kulda J; Flegr J; Foster PG; Embley TM Mol Biol Evol; 2005 Dec; 22(12):2508-18. PubMed ID: 16120804 [TBL] [Abstract][Full Text] [Related]
40. Phylogenetic relationships among early-diverging eudicots based on four genes: were the eudicots ancestrally woody? Kim S; Soltis DE; Soltis PS; Zanis MJ; Suh Y Mol Phylogenet Evol; 2004 Apr; 31(1):16-30. PubMed ID: 15019605 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]