BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 10632057)

  • 1. Molecular recognition of tyrosinyl adenylate analogues by prokaryotic tyrosyl tRNA synthetases.
    Brown P; Richardson CM; Mensah LM; O'Hanlon PJ; Osborne NF; Pope AJ; Walker G
    Bioorg Med Chem; 1999 Nov; 7(11):2473-85. PubMed ID: 10632057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of tyrosyl-tRNA synthetase refined at 2.3 A resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate.
    Brick P; Bhat TN; Blow DM
    J Mol Biol; 1989 Jul; 208(1):83-98. PubMed ID: 2504923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalysis of tyrosyl-adenylate formation by the human tyrosyl-tRNA synthetase.
    Austin J; First EA
    J Biol Chem; 2002 Apr; 277(17):14812-20. PubMed ID: 11856731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free energy of hydrolysis of tyrosyl adenylate and its binding to wild-type and engineered mutant tyrosyl-tRNA synthetases.
    Wells TN; Ho CK; Fersht AR
    Biochemistry; 1986 Oct; 25(21):6603-8. PubMed ID: 3466647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlating amino acid conservation with function in tyrosyl-tRNA synthetase.
    Xin Y; Li W; Dwyer DS; First EA
    J Mol Biol; 2000 Oct; 303(2):287-98. PubMed ID: 11023793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conserved amino acids near the carboxy terminus of bacterial tyrosyl-tRNA synthetase are involved in tRNA and Tyr-AMP binding.
    Salazar JC; Zuñiga R; Lefimil C; Söll D; Orellana O
    FEBS Lett; 2001 Mar; 491(3):257-60. PubMed ID: 11240138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of threonine 234 in catalysis of tyrosyl adenylate formation by tyrosyl-tRNA synthetase.
    First EA; Fersht AR
    Biochemistry; 1993 Dec; 32(49):13644-50. PubMed ID: 8257697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid activation in crystalline tyrosyl-tRNA synthetase from Bacillus stearothermophilus.
    Rubin J; Blow DM
    J Mol Biol; 1981 Jan; 145(3):489-500. PubMed ID: 7265210
    [No Abstract]   [Full Text] [Related]  

  • 9. Deletion mutagenesis using an 'M13 splint': the N-terminal structural domain of tyrosyl-tRNA synthetase (B. stearothermophilus) catalyses the formation of tyrosyl adenylate.
    Waye MM; Winter G; Wilkinson AJ; Fersht AR
    EMBO J; 1983; 2(10):1827-9. PubMed ID: 6315404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The binding of tyrosinyl-5'-AMP to tyrosyl-tRNA synthetase (E.coli).
    Grosse F; Krauss G; Kownatzki R; Maass G
    Nucleic Acids Res; 1979 Apr; 6(4):1631-8. PubMed ID: 377229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of crystalline tyrosyl-tRNA synthetase with adenosine, adenosine monophosphate, adenosine triphosphate and pyrophosphate in the presence of tyrosinol.
    Monteilhet C; Blow DM; Brick P
    J Mol Biol; 1984 Mar; 173(4):477-85. PubMed ID: 6323720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aminoacyl-tRNA synthetases from Bacillus stearothermophilus. Asymmetry of substrate binding to tyrosyl-tRNA synthetase.
    Bosshard HR; Koch LE; Hartley BS
    Eur J Biochem; 1975 May; 53(2):493-8. PubMed ID: 1140198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internal thermodynamics of position 51 mutants and natural variants of tyrosyl-tRNA synthetase.
    Ho CK; Fersht AR
    Biochemistry; 1986 Apr; 25(8):1891-7. PubMed ID: 3518795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of tyrosyl aryl dipeptides with S. aureus tyrosyl tRNA synthetase: inhibition and crystal structure of a complex.
    Jarvest RL; Berge JM; Houge-Frydrych CS; Janson C; Mensah LM; O'Hanlon PJ; Pope A; Saldanha A; Qiu X
    Bioorg Med Chem Lett; 1999 Oct; 9(19):2859-62. PubMed ID: 10522706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural variation of tyrosyl-tRNA synthetase and comparison with engineered mutants.
    Jones MD; Lowe DM; Borgford T; Fersht AR
    Biochemistry; 1986 Apr; 25(8):1887-91. PubMed ID: 3011073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protection of an unstable reaction intermediate examined with linear free energy relationships in tyrosyl-tRNA synthetase.
    Wells TN; Fersht AR
    Biochemistry; 1989 Nov; 28(23):9201-9. PubMed ID: 2690955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors.
    Qiu X; Janson CA; Smith WW; Green SM; McDevitt P; Johanson K; Carter P; Hibbs M; Lewis C; Chalker A; Fosberry A; Lalonde J; Berge J; Brown P; Houge-Frydrych CS; Jarvest RL
    Protein Sci; 2001 Oct; 10(10):2008-16. PubMed ID: 11567092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of D-tyrosine by Bacillus stearothermophilus tyrosyl-tRNA synthetase: 2. Cooperative binding of ATP is limited to the initial turnover of the enzyme.
    Sheoran A; First EA
    J Biol Chem; 2008 May; 283(19):12971-80. PubMed ID: 18319246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlations between kinetic and X-ray analyses of engineered enzymes: crystal structures of mutants Cys----Gly-35 and Tyr----Phe-34 of tyrosyl-tRNA synthetase.
    Fothergill MD; Fersht AR
    Biochemistry; 1991 May; 30(21):5157-64. PubMed ID: 2036381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns.
    Mohr G; Rennard R; Cherniack AD; Stryker J; Lambowitz AM
    J Mol Biol; 2001 Mar; 307(1):75-92. PubMed ID: 11243805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.