These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 1063230)

  • 1. [Temperature dependence of inner structure in dental amalgam (author's transl)].
    Onagawa J; Abe T
    Shika Rikogaku Zasshi; 1976 Jan; 17(37):1-4. PubMed ID: 1063230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of the cooling rate of dental alloys on their amalgamation properties.
    Johnson LB; Carwile AC
    J Biomed Mater Res; 1978 May; 12(3):367-80. PubMed ID: 670259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure in gold-containing Ag3Sn-amalgam.
    Malhotra ML
    J Biomed Mater Res; 1976 Jan; 10(1):9-23. PubMed ID: 1249092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth kinetics of gamma 2 crystals on mercury-plated Ag3Sn.
    Okabe T; Hines AL; Hochman RF
    J Biomed Mater Res; 1975 Sep; 9(5):389-98. PubMed ID: 1176516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Studies on Pd base ternary alloys for dental amalgam. (Part 2) On the corrosion resistivity (author's transl)].
    Yasumura I
    Shika Rikogaku Zasshi; 1980 Jan; 21(53):69-77. PubMed ID: 6929857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature change in the pulp chamber during application of heat to composite and amalgam cores and its returning time to oral heat.
    Anil N; Keyf F
    Int Dent J; 1996 Aug; 46(4):362-6. PubMed ID: 9147126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-temperature behavior for creep of dental amalgam.
    Greener EH; Szurgot K; Lautenschlager EP
    J Biomed Mater Res; 1980 Mar; 14(2):161-71. PubMed ID: 7358744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model.
    Wang JC; Kabo JM; Tsou PM; Halevi L; Shamie AN
    Spine J; 2005; 5(1):64-70. PubMed ID: 15653086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of sintering temperature on flexural properties of alumina fiber-reinforced, alumina-based ceramics prepared by tape casting technique.
    Tanimoto Y; Nemoto K
    J Prosthodont; 2006; 15(6):345-52. PubMed ID: 17096806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction of mercury with silver-tin dental amalgam alloy.
    Abbott JR; Miller DR; Netherway DJ
    J Biomed Mater Res; 1982 Sep; 16(5):535-47. PubMed ID: 7130210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of inductively coupled plasma-emission spectroscopy and mercury vapor analyses to evaluate elemental release from a high-copper dental amalgam: a pilot study.
    Cohen BI; Penugonda B
    J Prosthet Dent; 2001 Apr; 85(4):409-12. PubMed ID: 11319540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Studies on high temperature oxidation of noble metal alloys for dental use. (III) On high temperature oxidation resistance of noble metal alloys by adding small amounts of alloying elements. (author's transl)].
    Ohno H
    Shika Rikogaku Zasshi; 1976 Nov; 17(40):322-35. PubMed ID: 1069825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Studies on high temperature oxidation of noble metal alloys for dental use (I). Formation of oxide layers and oxidation rate (author's transl)].
    Ohno H
    Shika Rikogaku Zasshi; 1976 Nov; 17(40):297-312. PubMed ID: 1069823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microleakage of amalgam restorations using dentin bonding system primers.
    Berry FA; Parker SD; Rice D; Muñoz CA
    Am J Dent; 1996 Aug; 9(4):174-8. PubMed ID: 9002794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal decomposition and reconstruction of hydroxyapatite in air atmosphere.
    Liao CJ; Lin FH; Chen KS; Sun JS
    Biomed Sci Instrum; 1999; 35():99-104. PubMed ID: 11143400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Application to dental casting machine of the rapid heating infrared image furnace (author's transl)].
    Etchu Y; Noguchi H
    Shika Rikogaku Zasshi; 1980 Oct; 21(56):277-87. PubMed ID: 7017037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Change in creep rate and microstructure in an aged, low-copper amalgam.
    Okabe T; Mitchell RJ; Butts MB; Galloway SS; Twiggs WS
    J Biomed Mater Res; 1985; 19(6):727-46. PubMed ID: 4077893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further study of restored and un-restored teeth subjected to high temperatures.
    Merlati G; Savlo C; Danesino P; Fassina G; Menghini P
    J Forensic Odontostomatol; 2004 Dec; 22(2):34-9. PubMed ID: 16223018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microleakage of bonded amalgam restorations: effect of thermal cycling.
    Helvatjoglou-Antoniades M; Theodoridou-Pahini S; Papadogiannis Y; Karezis A
    Oper Dent; 2000; 25(4):316-23. PubMed ID: 11203837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The creep compliance of dental amalgam in the stress range of 20-80 MPa.
    Greener EH; Szurgot K; Lautenschlager EP
    J Biomed Mater Res; 1982 Sep; 16(5):599-608. PubMed ID: 7130215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.