These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
61 related articles for article (PubMed ID: 10632567)
1. Oxidative stress and calcium homeostasis in dystrophic skin fibroblasts. Degl'Innocenti D; Pieri A; Rosati F; Ramponi G IUBMB Life; 1999 Oct; 48(4):391-6. PubMed ID: 10632567 [TBL] [Abstract][Full Text] [Related]
2. Alteration of free calcium levels and acylphosphatase muscular isoenzyme in cultured dystrophic skin fibroblasts. Degl'Innocenti D; Pieri A; Berti A; Liguri G; Cecchi C; Ramponi G Biochem Biophys Res Commun; 1997 Jan; 230(2):327-30. PubMed ID: 9016776 [TBL] [Abstract][Full Text] [Related]
3. GSH system in relation to redox state in dystrophic skin fibroblasts. Degl'Innocenti D; Rosati F; Iantomasi T; Vincenzini MT; Ramponi G Biochimie; 1999 Nov; 81(11):1025-9. PubMed ID: 10575357 [TBL] [Abstract][Full Text] [Related]
4. Skin cells for use in an alternate diagnostic method for Duchenne muscular dystrophy. Tyers L; Davids LM; Wilmshurst JM; Esterhuizen AI Neuromuscul Disord; 2018 Jul; 28(7):553-563. PubMed ID: 29958823 [TBL] [Abstract][Full Text] [Related]
5. Immortalized skin fibroblasts expressing conditional MyoD as a renewable and reliable source of converted human muscle cells to assess therapeutic strategies for muscular dystrophies: validation of an exon-skipping approach to restore dystrophin in Duchenne muscular dystrophy cells. Chaouch S; Mouly V; Goyenvalle A; Vulin A; Mamchaoui K; Negroni E; Di Santo J; Butler-Browne G; Torrente Y; Garcia L; Furling D Hum Gene Ther; 2009 Jul; 20(7):784-90. PubMed ID: 19358679 [TBL] [Abstract][Full Text] [Related]
6. Anti-fibrotic effect of pirfenidone in muscle derived-fibroblasts from Duchenne muscular dystrophy patients. Zanotti S; Bragato C; Zucchella A; Maggi L; Mantegazza R; Morandi L; Mora M Life Sci; 2016 Jan; 145():127-36. PubMed ID: 26679108 [TBL] [Abstract][Full Text] [Related]
7. Muscle damage in mdx (dystrophic) mice: role of calcium and reactive oxygen species. Whitehead NP; Yeung EW; Allen DG Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):657-62. PubMed ID: 16789936 [TBL] [Abstract][Full Text] [Related]
8. The involvement of oxidative stress in determining the severity and progress of pathological processes in dystrophin-deficient muscles. Niebrój-Dobosz I; Hausmanowa-Petrusewicz I Acta Biochim Pol; 2005; 52(2):449-52. PubMed ID: 15990924 [TBL] [Abstract][Full Text] [Related]
9. Improvement of calcium handling and changes in calcium-release properties after mini- or full-length dystrophin forced expression in cultured skeletal myotubes. Marchand E; Constantin B; Balghi H; Claudepierre MC; Cantereau A; Magaud C; Mouzou A; Raymond G; Braun S; Cognard C Exp Cell Res; 2004 Jul; 297(2):363-79. PubMed ID: 15212940 [TBL] [Abstract][Full Text] [Related]
10. Increased expression of IGF-binding protein-5 in Duchenne muscular dystrophy (DMD) fibroblasts correlates with the fibroblast-induced downregulation of DMD myoblast growth: an in vitro analysis. Melone MA; Peluso G; Galderisi U; Petillo O; Cotrufo R J Cell Physiol; 2000 Oct; 185(1):143-53. PubMed ID: 10942528 [TBL] [Abstract][Full Text] [Related]
11. Induction, effects, and quantification of sublethal oxidative stress by hydrogen peroxide on cultured human fibroblasts. Mocali A; Caldini R; Chevanne M; Paoletti F Exp Cell Res; 1995 Feb; 216(2):388-95. PubMed ID: 7843283 [TBL] [Abstract][Full Text] [Related]
14. Description of a Novel Mechanism Possibly Explaining the Antiproliferative Properties of Glucocorticoids in Duchenne Muscular Dystrophy Fibroblasts Based on Glucocorticoid Receptor GR and NFAT5. Herbelet S; De Paepe B; De Bleecker JL Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33287327 [TBL] [Abstract][Full Text] [Related]
15. Genetic polymorphism in muscle biopsies of Duchenne and Becker muscular dystrophy patients. Anand A; Prabhakar S; Kaul D Neurol India; 1999 Sep; 47(3):218-23. PubMed ID: 10514583 [TBL] [Abstract][Full Text] [Related]
16. Is the normal content of sulfhydryl groups attributable to sparing from dystrophic pathology in dystrophin-deficient muscles? Niebrój-Dobosz I; Fidziańska A; Glinka Z; Hausmanowa-Petrusewicz I Folia Neuropathol; 2002; 40(3):143-50. PubMed ID: 12572920 [TBL] [Abstract][Full Text] [Related]
17. Isoprostanes in dystrophinopathy: Evidence of increased oxidative stress. Grosso S; Perrone S; Longini M; Bruno C; Minetti C; Gazzolo D; Balestri P; Buonocore G Brain Dev; 2008 Jun; 30(6):391-5. PubMed ID: 18180123 [TBL] [Abstract][Full Text] [Related]
18. Dystrophin analysis in carriers of Duchenne and Becker muscular dystrophy. Hoogerwaard EM; Ginjaar IB; Bakker E; de Visser M Neurology; 2005 Dec; 65(12):1984-6. PubMed ID: 16380627 [TBL] [Abstract][Full Text] [Related]
19. Abnormal growth kinetics and 5'-nucleotidase activities in cultured skin fibroblasts from patients with Duchenne muscular dystrophy. Liechti-Gallati S; Moser H; Siegrist HP; Wiesmann U; Herschkowitz NN Pediatr Res; 1981 Nov; 15(11):1411-4. PubMed ID: 6272184 [TBL] [Abstract][Full Text] [Related]
20. Duchenne muscular dystrophy: 45Ca exchange in cultured skin fibroblasts and the effect of calcium ionophore A23187. Statham HE; Dubowitz V Clin Chim Acta; 1979 Sep; 96(3):225-31. PubMed ID: 385173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]