These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 10632620)

  • 1. Traveling slow waves of neural activity: a novel form of network activity in developing neocortex.
    Peinado A
    J Neurosci; 2000 Jan; 20(2):RC54. PubMed ID: 10632620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presynaptic muscarinic (M3) receptors reduce excitatory transmission in dopamine neurons of the rat mesencephalon.
    Grillner P; Bonci A; Svensson TH; Bernardi G; Mercuri NB
    Neuroscience; 1999; 91(2):557-65. PubMed ID: 10366013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homeostatically regulated spontaneous neuronal discharges protect developing cerebral cortex networks from becoming hyperactive following prolonged blockade of excitatory synaptic receptors.
    Corner MA; Baker RE; van Pelt J
    Brain Res; 2006 Aug; 1106(1):40-45. PubMed ID: 16836981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow synchronized bursts of inhibitory postsynaptic currents (0.1-0.3 Hz) by cholinergic stimulation in the rat frontal cortex in vitro.
    Kondo S; Kawaguchi Y
    Neuroscience; 2001; 107(4):551-60. PubMed ID: 11720779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylcholine modulates respiratory pattern: effects mediated by M3-like receptors in preBötzinger complex inspiratory neurons.
    Shao XM; Feldman JL
    J Neurophysiol; 2000 Mar; 83(3):1243-52. PubMed ID: 10712452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early network activity propagates bidirectionally between hippocampus and cortex.
    Barger Z; Easton CR; Neuzil KE; Moody WJ
    Dev Neurobiol; 2016 Jun; 76(6):661-72. PubMed ID: 26385616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-neuron discharge properties and network activity in dissociated cultures of neocortex.
    Giugliano M; Darbon P; Arsiero M; Lüscher HR; Streit J
    J Neurophysiol; 2004 Aug; 92(2):977-96. PubMed ID: 15044515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gq/11-induced and spontaneous waves of coordinated network activation in developing frontal cortex.
    Calderon DP; Leverkova N; Peinado A
    J Neurosci; 2005 Feb; 25(7):1737-49. PubMed ID: 15716410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immature neocortical neurons exist as extensive syncitial networks linked by dendrodendritic electrical connections.
    Peinado A
    J Neurophysiol; 2001 Feb; 85(2):620-9. PubMed ID: 11160498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic mechanism of the slow afterdepolarization induced by muscarinic receptor activation in rat prefrontal cortex.
    Haj-Dahmane S; Andrade R
    J Neurophysiol; 1998 Sep; 80(3):1197-210. PubMed ID: 9744932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of muscarinic facilitation of epileptiform discharges in immature rat neocortex.
    Potier S; Psarropoulou C
    Brain Res; 2004 Feb; 997(2):194-206. PubMed ID: 14706872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagating waves of activity in the neocortex: what they are, what they do.
    Wu JY; Xiaoying Huang ; Chuan Zhang
    Neuroscientist; 2008 Oct; 14(5):487-502. PubMed ID: 18997124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons.
    Klink R; Alonso A
    J Neurophysiol; 1997 Apr; 77(4):1813-28. PubMed ID: 9114238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscarine-induced increase in frequency of spontaneous EPSCs in Purkinje cells in the vestibulo-cerebellum of the rat.
    Takayasu Y; Iino M; Furuya N; Ozawa S
    J Neurosci; 2003 Jul; 23(15):6200-8. PubMed ID: 12867503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical activity patterns and the functional maturation of the neocortex.
    Kilb W; Kirischuk S; Luhmann HJ
    Eur J Neurosci; 2011 Nov; 34(10):1677-86. PubMed ID: 22103424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of coherent neuronal activity patterns in mammalian cortical networks: common principles and local hetereogeneity.
    Egorov AV; Draguhn A
    Mech Dev; 2013; 130(6-8):412-23. PubMed ID: 23032193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholinergic inhibition of neocortical pyramidal neurons.
    Gulledge AT; Stuart GJ
    J Neurosci; 2005 Nov; 25(44):10308-20. PubMed ID: 16267239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional calcium imaging in developing cortical networks.
    Dawitz J; Kroon T; Hjorth JJ; Meredith RM
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22041662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear calcium signaling evoked by cholinergic stimulation in hippocampal CA1 pyramidal neurons.
    Power JM; Sah P
    J Neurosci; 2002 May; 22(9):3454-62. PubMed ID: 11978822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circuit level defects in the developing neocortex of Fragile X mice.
    Gonçalves JT; Anstey JE; Golshani P; Portera-Cailliau C
    Nat Neurosci; 2013 Jul; 16(7):903-9. PubMed ID: 23727819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.