These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 10632630)

  • 21. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells.
    Sato M; Ito A; Kawabe Y; Nagamori E; Kamihira M
    J Biosci Bioeng; 2011 Sep; 112(3):273-8. PubMed ID: 21646045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. IGF-II is up-regulated and myofibres are hypertrophied in regenerating soleus of mice lacking FGF6.
    Armand AS; LĂ©colle S; Launay T; Pariset C; Fiore F; Della Gaspera B; Birnbaum D; Chanoine C; Charbonnier F
    Exp Cell Res; 2004 Jul; 297(1):27-38. PubMed ID: 15194422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The insulin-like growth factor (IGF)-I E-peptides are required for isoform-specific gene expression and muscle hypertrophy after local IGF-I production.
    Barton ER; DeMeo J; Lei H
    J Appl Physiol (1985); 2010 May; 108(5):1069-76. PubMed ID: 20133429
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Viral expression of insulin-like growth factor I E-peptides increases skeletal muscle mass but at the expense of strength.
    Brisson BK; Spinazzola J; Park S; Barton ER
    Am J Physiol Endocrinol Metab; 2014 Apr; 306(8):E965-74. PubMed ID: 24569593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insulin-like growth factor-I E peptides: implications for aging skeletal muscle.
    Velloso CP; Harridge SD
    Scand J Med Sci Sports; 2010 Feb; 20(1):20-7. PubMed ID: 19883387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term insulin-like growth factor-I expression in skeletal muscles attenuates the enhanced in vitro proliferation ability of the resident satellite cells in transgenic mice.
    Chakravarthy MV; Fiorotto ML; Schwartz RJ; Booth FW
    Mech Ageing Dev; 2001 Sep; 122(12):1303-20. PubMed ID: 11438121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of the insulin-like growth factor 1 (IGF-1) in skeletal muscle physiology.
    Philippou A; Maridaki M; Halapas A; Koutsilieris M
    In Vivo; 2007; 21(1):45-54. PubMed ID: 17354613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage.
    Hill M; Goldspink G
    J Physiol; 2003 Jun; 549(Pt 2):409-18. PubMed ID: 12692175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insulin-like growth factor-I analogue protects muscles of dystrophic mdx mice from contraction-mediated damage.
    Gehrig SM; Ryall JG; Schertzer JD; Lynch GS
    Exp Physiol; 2008 Nov; 93(11):1190-8. PubMed ID: 18567600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Insulin-like growth factor 1 and muscle growth: implication for satellite cell proliferation.
    Machida S; Booth FW
    Proc Nutr Soc; 2004 May; 63(2):337-40. PubMed ID: 15294052
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle.
    Musarò A; McCullagh K; Paul A; Houghton L; Dobrowolny G; Molinaro M; Barton ER; Sweeney HL; Rosenthal N
    Nat Genet; 2001 Feb; 27(2):195-200. PubMed ID: 11175789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. IGF-I lucidity ... the murky waters begin to clear?
    Spangenburg EE
    J Appl Physiol (1985); 2010 May; 108(5):1032-3. PubMed ID: 20223992
    [No Abstract]   [Full Text] [Related]  

  • 33. Targeted expression of IGF-1 transgene to skeletal muscle accelerates muscle and motor neuron regeneration.
    Rabinovsky ED; Gelir E; Gelir S; Lui H; Kattash M; DeMayo FJ; Shenaq SM; Schwartz RJ
    FASEB J; 2003 Jan; 17(1):53-5. PubMed ID: 12424223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of insulin-like growth factor 1 gene expression in skeletal muscle.
    Loughna PT; Mason P; Bates PC
    Symp Soc Exp Biol; 1992; 46():319-30. PubMed ID: 1341045
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exercise and the growth hormone-insulin-like growth factor axis.
    Frystyk J
    Med Sci Sports Exerc; 2010 Jan; 42(1):58-66. PubMed ID: 20010129
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of insulin-like growth factor-I in skeletal muscle and muscle cells.
    Frost RA; Lang CH
    Minerva Endocrinol; 2003 Mar; 28(1):53-73. PubMed ID: 12621363
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Implications of cross-talk between tumour necrosis factor and insulin-like growth factor-1 signalling in skeletal muscle.
    Grounds MD; Radley HG; Gebski BL; Bogoyevitch MA; Shavlakadze T
    Clin Exp Pharmacol Physiol; 2008 Jul; 35(7):846-51. PubMed ID: 18215180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechano Growth Factor E peptide (MGF-E), derived from an isoform of IGF-1, activates human muscle progenitor cells and induces an increase in their fusion potential at different ages.
    Kandalla PK; Goldspink G; Butler-Browne G; Mouly V
    Mech Ageing Dev; 2011 Apr; 132(4):154-62. PubMed ID: 21354439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. IGF-1 induces human myotube hypertrophy by increasing cell recruitment.
    Jacquemin V; Furling D; Bigot A; Butler-Browne GS; Mouly V
    Exp Cell Res; 2004 Sep; 299(1):148-58. PubMed ID: 15302582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women.
    Petrella JK; Kim JS; Cross JM; Kosek DJ; Bamman MM
    Am J Physiol Endocrinol Metab; 2006 Nov; 291(5):E937-46. PubMed ID: 16772322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.