These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 10633547)
1. Sub-lethal effects of heavy metals on activated sludge microorganisms. Chua H; Yu PH; Sin SN; Cheung MW Chemosphere; 1999 Dec; 39(15):2681-92. PubMed ID: 10633547 [TBL] [Abstract][Full Text] [Related]
2. Effects of trace levels of copper, chromium, and zinc ions on the performance of activated sludge. Sin SN; Chua H; Lo W; Yu PH Appl Biochem Biotechnol; 2000; 84-86():487-500. PubMed ID: 10849815 [TBL] [Abstract][Full Text] [Related]
3. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
4. Effect of heavy metals on the performance and bacterial profiles of activated sludge in a semi-continuous reactor. Bhat SA; Cui G; Li W; Wei Y; Li F Chemosphere; 2020 Feb; 241():125035. PubMed ID: 31606576 [TBL] [Abstract][Full Text] [Related]
5. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Smith SR Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760 [TBL] [Abstract][Full Text] [Related]
6. Effect of heavy metals on nitrification performance in different activated sludge processes. You SJ; Tsai YP; Huang RY J Hazard Mater; 2009 Jun; 165(1-3):987-94. PubMed ID: 19084333 [TBL] [Abstract][Full Text] [Related]
7. Decontamination of heavy metal laden sewage sludge with simultaneous solids reduction using thermophilic sulfur and ferrous oxidizing species. Mehrotra A; Kundu K; Sreekrishnan TR J Environ Manage; 2016 Feb; 167():228-35. PubMed ID: 26686075 [TBL] [Abstract][Full Text] [Related]
8. Activated sludge process enabling highly efficient removal of heavy metal in wastewater. Liu GH; Tang X; Yuan J; Li Q; Qi L; Wang H; Ye Z; Zhao Q Environ Sci Pollut Res Int; 2023 Feb; 30(8):21132-21143. PubMed ID: 36264470 [TBL] [Abstract][Full Text] [Related]
9. Fate and behaviour of copper and zinc in secondary biological wastewater treatment processes: I. Evaluation of biomass adsorption capacity. Crane RS; Barton P; Cartmell E; Coulon F; Hillis P; Judd SJ; Santos A; Stephenson T; Lester JN Environ Technol; 2010 Jun; 31(7):705-23. PubMed ID: 20586234 [TBL] [Abstract][Full Text] [Related]
10. Cloning of a heavy-metal-binding protein derived from activated-sludge microorganisms. Sano D; Myojo K; Omura T Appl Environ Microbiol; 2006 Sep; 72(9):6377-80. PubMed ID: 16957266 [TBL] [Abstract][Full Text] [Related]
11. Biosorption of chromium, copper and zinc by wine-processing waste sludge: single and multi-component system study. Liu CC; Wang MK; Chiou CS; Li YS; Yang CY; Lin YA J Hazard Mater; 2009 Nov; 171(1-3):386-92. PubMed ID: 19586716 [TBL] [Abstract][Full Text] [Related]
12. Effect of bio-sludge concentration on the efficiency of sequencing batch reactor (SBR) system to treat wastewater containing Pb2+ and Ni2+. Sirianuntapiboon S; Boonchupleing M J Hazard Mater; 2009 Jul; 166(1):356-64. PubMed ID: 19097695 [TBL] [Abstract][Full Text] [Related]
13. Pattern of multiresistant to antimicrobials and heavy metal tolerance in bacteria isolated from sewage sludge samples from a composting process at a recycling plant in southern Brazil. Heck K; De Marco ÉG; Duarte MW; Salamoni SP; Van Der Sand S Environ Monit Assess; 2015 Jun; 187(6):328. PubMed ID: 25944755 [TBL] [Abstract][Full Text] [Related]
14. Fate and behaviour of copper and zinc in secondary biological wastewater treatment processes: II. Removal at varying sludge age. Santos A; Barton P; Cartmell E; Coulon F; Crane RS; Hillis P; Lester JN; Stephenson T; Judd SJ Environ Technol; 2010 Jun; 31(7):725-43. PubMed ID: 20586235 [TBL] [Abstract][Full Text] [Related]
15. Optimization and/or acclimatization of activated sludge process under heavy metals stress. El Bestawy E; Helmy S; Hussein H; Fahmy M World J Microbiol Biotechnol; 2013 Apr; 29(4):693-705. PubMed ID: 23212207 [TBL] [Abstract][Full Text] [Related]
16. Sewage sludge bioleaching by indigenous sulfur-oxidizing bacteria: effects of ratio of substrate dosage to solid content. Zhang P; Zhu Y; Zhang G; Zou S; Zeng G; Wu Z Bioresour Technol; 2009 Feb; 100(3):1394-8. PubMed ID: 18945613 [TBL] [Abstract][Full Text] [Related]
17. Biosorption of heavy metals in upflow sludge columns. Barros AJ; Prasad S; Leite VD; Souza AG Bioresour Technol; 2007 May; 98(7):1418-25. PubMed ID: 16839760 [TBL] [Abstract][Full Text] [Related]
18. Some properties of a sequencing batch reactor system for removal of vat dyes. Sirianuntapiboon S; Chairattanawan K; Jungphungsukpanich S Bioresour Technol; 2006 Jul; 97(10):1243-52. PubMed ID: 16023339 [TBL] [Abstract][Full Text] [Related]
19. Effects of different sewage sludge applications on heavy metal accumulation, growth and yield of spinach (Spinacia oleracea L.). Eid EM; El-Bebany AF; Alrumman SA; Hesham AE; Taher MA; Fawy KF Int J Phytoremediation; 2017 Apr; 19(4):340-347. PubMed ID: 27593943 [TBL] [Abstract][Full Text] [Related]
20. Application of ionic liquids for the removal of heavy metals from wastewater and activated sludge. Fuerhacker M; Haile TM; Kogelnig D; Stojanovic A; Keppler B Water Sci Technol; 2012; 65(10):1765-73. PubMed ID: 22546790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]