These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 10633986)
1. Multinomial processing tree models: an implementation. Hu X Behav Res Methods Instrum Comput; 1999 Nov; 31(4):689-95. PubMed ID: 10633986 [TBL] [Abstract][Full Text] [Related]
2. AppleTree: a multinomial processing tree modeling program for Macintosh computers. Rothkegel R Behav Res Methods Instrum Comput; 1999 Nov; 31(4):696-700. PubMed ID: 10633987 [TBL] [Abstract][Full Text] [Related]
3. HMMTree: a computer program for latent-class hierarchical multinomial processing tree models. Stahl C; Klauer KC Behav Res Methods; 2007 May; 39(2):267-73. PubMed ID: 17695354 [TBL] [Abstract][Full Text] [Related]
4. multiTree: a computer program for the analysis of multinomial processing tree models. Moshagen M Behav Res Methods; 2010 Feb; 42(1):42-54. PubMed ID: 20160285 [TBL] [Abstract][Full Text] [Related]
5. TreeBUGS: An R package for hierarchical multinomial-processing-tree modeling. Heck DW; Arnold NR; Arnold D Behav Res Methods; 2018 Feb; 50(1):264-284. PubMed ID: 28374146 [TBL] [Abstract][Full Text] [Related]
6. rtmpt: An R package for fitting response-time extended multinomial processing tree models. Hartmann R; Johannsen L; Klauer KC Behav Res Methods; 2020 Jun; 52(3):1313-1338. PubMed ID: 32377974 [TBL] [Abstract][Full Text] [Related]
7. Evaluating the robustness of parameter estimates in cognitive models: A meta-analytic review of multinomial processing tree models across the multiverse of estimation methods. Singmann H; Heck DW; Barth M; Erdfelder E; Arnold NR; Aust F; Calanchini J; Gümüsdagli FE; Horn SS; Kellen D; Klauer KC; Matzke D; Meissner F; Michalkiewicz M; Schaper ML; Stahl C; Kuhlmann BG; Groß J Psychol Bull; 2024 Aug; 150(8):965-1003. PubMed ID: 38934916 [TBL] [Abstract][Full Text] [Related]
8. MPTinR: analysis of multinomial processing tree models in R. Singmann H; Kellen D Behav Res Methods; 2013 Jun; 45(2):560-75. PubMed ID: 23344733 [TBL] [Abstract][Full Text] [Related]
9. An SAS/IML procedure for maximum likelihood factor analysis. Chen R Behav Res Methods Instrum Comput; 2003 May; 35(2):310-7. PubMed ID: 12834089 [TBL] [Abstract][Full Text] [Related]
10. Using recursive partitioning to account for parameter heterogeneity in multinomial processing tree models. Wickelmaier F; Zeileis A Behav Res Methods; 2018 Jun; 50(3):1217-1233. PubMed ID: 28779459 [TBL] [Abstract][Full Text] [Related]
11. Uncertainties beyond statistics in Monte Carlo simulations. Hughes HG Radiat Prot Dosimetry; 2007; 126(1-4):45-51. PubMed ID: 17766264 [TBL] [Abstract][Full Text] [Related]
12. Reconsidering the Conditions for Conducting Confirmatory Factor Analysis. Ondé D; Alvarado JM Span J Psychol; 2020 Dec; 23():e55. PubMed ID: 33272349 [TBL] [Abstract][Full Text] [Related]
13. A Matlab function to estimate choice model parameters from paired-comparison data. Wickelmaier F; Schmid C Behav Res Methods Instrum Comput; 2004 Feb; 36(1):29-40. PubMed ID: 15190697 [TBL] [Abstract][Full Text] [Related]
14. Simulation of DNMR spectra using propagator formalism and Monte Carlo method. Szalay Z; Rohonczy J J Magn Reson; 2009 Mar; 197(1):48-55. PubMed ID: 19121593 [TBL] [Abstract][Full Text] [Related]
15. Random Effects Multinomial Processing Tree Models: A Maximum Likelihood Approach. Nestler S; Erdfelder E Psychometrika; 2023 Sep; 88(3):809-829. PubMed ID: 37247167 [TBL] [Abstract][Full Text] [Related]
16. The natural mathematics of behavior analysis. Li D; Hautus MJ; Elliffe D J Exp Anal Behav; 2018 May; 109(3):451-474. PubMed ID: 29671880 [TBL] [Abstract][Full Text] [Related]
17. Is self special? A critical review of evidence from experimental psychology and cognitive neuroscience. Gillihan SJ; Farah MJ Psychol Bull; 2005 Jan; 131(1):76-97. PubMed ID: 15631554 [TBL] [Abstract][Full Text] [Related]
18. Minimum description length model selection of multinomial processing tree models. Wu H; Myung JI; Batchelder WH Psychon Bull Rev; 2010 Jun; 17(3):275-86. PubMed ID: 20551349 [TBL] [Abstract][Full Text] [Related]
19. An Exploratory Diagnostic Model for Ordinal Responses with Binary Attributes: Identifiability and Estimation. Culpepper SA Psychometrika; 2019 Dec; 84(4):921-940. PubMed ID: 31432312 [TBL] [Abstract][Full Text] [Related]
20. Bayesian estimation of multinomial processing tree models with heterogeneity in participants and items. Matzke D; Dolan CV; Batchelder WH; Wagenmakers EJ Psychometrika; 2015 Mar; 80(1):205-35. PubMed ID: 24277381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]