These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
373 related articles for article (PubMed ID: 10634585)
1. Glucose and lactate metabolism by Actinomyces naeslundii. Takahashi N; Yamada T Crit Rev Oral Biol Med; 1999; 10(4):487-503. PubMed ID: 10634585 [TBL] [Abstract][Full Text] [Related]
2. Catabolic pathway for aerobic degradation of lactate by Actinomyces naeslundii. Takahashi N; Yamada T Oral Microbiol Immunol; 1996 Jun; 11(3):193-8. PubMed ID: 8941775 [TBL] [Abstract][Full Text] [Related]
3. Phosphorylating enzymes involved in glucose fermentation of Actinomyces naeslundii. Takahashi N; Kalfas S; Yamada T J Bacteriol; 1995 Oct; 177(20):5806-11. PubMed ID: 7592327 [TBL] [Abstract][Full Text] [Related]
4. Effects of pH on the glucose and lactate metabolisms by the washed cells of Actinomyces naeslundii under anaerobic and aerobic conditions. Takahashi N; Yamada T Oral Microbiol Immunol; 1999 Feb; 14(1):60-5. PubMed ID: 10204482 [TBL] [Abstract][Full Text] [Related]
5. The role of the succinate pathway in sorbitol fermentation by oral Actinomyces viscosus and Actinomyces naeslundii. Takahashi N; Kalfas S; Yamada T Oral Microbiol Immunol; 1994 Aug; 9(4):218-23. PubMed ID: 7478761 [TBL] [Abstract][Full Text] [Related]
6. Glucose metabolism by Prevotella intermedia and Prevotella nigrescens. Takahashi N; Yamada T Oral Microbiol Immunol; 2000 Jun; 15(3):188-95. PubMed ID: 11154402 [TBL] [Abstract][Full Text] [Related]
7. Glycogen synthetic and degradative activities by Actinomyces viscosus and Actinomyces naeslundii of root surface caries and noncaries sites. Komiyama K; Khandelwal RL; Heinrich SE Caries Res; 1988; 22(4):217-25. PubMed ID: 3165713 [TBL] [Abstract][Full Text] [Related]
8. Oxygen-dependent lactate utilization by Actinomyces viscosus and Actinomyces naeslundii. van der Hoeven JS; van den Kieboom CW Oral Microbiol Immunol; 1990 Aug; 5(4):223-5. PubMed ID: 2082247 [TBL] [Abstract][Full Text] [Related]
9. Metabolomics of supragingival plaque and oral bacteria. Takahashi N; Washio J; Mayanagi G J Dent Res; 2010 Dec; 89(12):1383-8. PubMed ID: 20924070 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of pyruvate dehydrogenase accelerates anaerobic glycolysis under postmortem simulating conditions. Taylor MJ; Stafford CD; Buhler JF; Dang DS; Alruzzi MA; Najm TA; Gerrard SD; Thornton KJ; van Vliet S; El-Kadi SW; Gerrard DE; Matarneh SK Meat Sci; 2024 Jul; 213():109510. PubMed ID: 38598967 [TBL] [Abstract][Full Text] [Related]
11. Oxygen-Inducible Conversion of Lactate to Acetate in Heterofermentative Lactobacillus brevis ATCC 367. Guo T; Zhang L; Xin Y; Xu Z; He H; Kong J Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28842545 [No Abstract] [Full Text] [Related]
12. Enzymes involved in l-lactate metabolism in humans. Adeva M; González-Lucán M; Seco M; Donapetry C Mitochondrion; 2013 Nov; 13(6):615-29. PubMed ID: 24029012 [TBL] [Abstract][Full Text] [Related]
13. Glycogen synthetic abilities of Actinomyces viscosus and Actinomyces naeslundii freshly isolated from dental plaque over root surface caries lesions and non-carious sites. Komiyama K; Khandelwal RL; Duncan DE J Dent Res; 1986 Jun; 65(6):899-902. PubMed ID: 3458740 [TBL] [Abstract][Full Text] [Related]
14. Formation of formate and hydrogen, and flux of reducing equivalents and carbon in Ruminococcus flavefaciens FD-1. Shi Y; Weimer PJ; Ralph J Antonie Van Leeuwenhoek; 1997 Aug; 72(2):101-9. PubMed ID: 9298188 [TBL] [Abstract][Full Text] [Related]
15. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. Inui M; Murakami S; Okino S; Kawaguchi H; Vertès AA; Yukawa H J Mol Microbiol Biotechnol; 2004; 7(4):182-96. PubMed ID: 15383716 [TBL] [Abstract][Full Text] [Related]
16. Oxygen and the sugar metabolism in oral streptococci. Abbe K; Carlsson J; Takahashi-Abbe S; Yamada T Proc Finn Dent Soc; 1991; 87(4):477-87. PubMed ID: 1775476 [TBL] [Abstract][Full Text] [Related]
18. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli. Zhu J; Shimizu K Appl Microbiol Biotechnol; 2004 Apr; 64(3):367-75. PubMed ID: 14673546 [TBL] [Abstract][Full Text] [Related]
19. [The primary research on relevant factors influencing urease activity of Actinomyces naeslundii]. Liu YL; Hu T; Zhang JY; Zhou XD Sichuan Da Xue Xue Bao Yi Xue Ban; 2007 Jul; 38(4):675-7. PubMed ID: 17718439 [TBL] [Abstract][Full Text] [Related]
20. The redox switch/redox coupling hypothesis. Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]