BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 10634708)

  • 1. Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms.
    Lei V; Amoa-Awua WK; Brimer L
    Int J Food Microbiol; 1999 Dec; 53(2-3):169-84. PubMed ID: 10634708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of cyanogenic glycosides: A review.
    Cressey P; Reeve J
    Food Chem Toxicol; 2019 Mar; 125():225-232. PubMed ID: 30615957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of amygdalin-degrading Lactobacillus species.
    Menon R; Munjal N; Sturino JM
    J Appl Microbiol; 2015 Feb; 118(2):443-53. PubMed ID: 25421573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening for Bacillus subtilis group isolates that degrade cyanogens at pH 4.5-5.0.
    Abban S; Brimer L; Abdelgadir WS; Jakobsen M; Thorsen L
    Int J Food Microbiol; 2013 Jan; 161(1):31-5. PubMed ID: 23261810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Souring and breakdown of cyanogenic glucosides during the processing of cassava into akyeke.
    Obilie EM; Tano-Debrah K; Amoa-Awua WK
    Int J Food Microbiol; 2004 May; 93(1):115-21. PubMed ID: 15135588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity and technological properties of predominant lactic acid bacteria from fermented cassava used for the preparation of Gari, a traditional African food.
    Kostinek M; Specht I; Edward VA; Schillinger U; Hertel C; Holzapfel WH; Franz CM
    Syst Appl Microbiol; 2005 Aug; 28(6):527-40. PubMed ID: 16104351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-step hydrolysis of amygdalin in molds.
    Brimer L; Cicalini AR; Federici F; Nout RM; Petruccioli M; Pulci V
    Riv Biol; 1996; 89(3):493-6. PubMed ID: 9122587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of moulds and yeasts to the fermentation of 'agbelima' cassava dough.
    Amoa-Awua WK; Frisvad JC; Sefa-Dedeh S; Jakobsen M
    J Appl Microbiol; 1997 Sep; 83(3):288-96. PubMed ID: 9351208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).
    Siritunga D; Sayre R
    Plant Mol Biol; 2004 Nov; 56(4):661-9. PubMed ID: 15630626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects on the cyanogenic glycoside content of fermenting cassava root pulp by beta-glucosidase and microbial activities.
    Maduagwu EN
    Toxicol Lett; 1983 Mar; 15(4):335-9. PubMed ID: 6404010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative metabolism of linamarin and amygdalin in hamsters.
    Frakes RA; Sharma RP; Willhite CC
    Food Chem Toxicol; 1986 May; 24(5):417-20. PubMed ID: 3744195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amygdalin degradation by Mucor circinelloides and Penicillium aurantiogriseum: mechanisms of hydrolysis.
    Brimer L; Cicalini AR; Federici F; Petruccioli M
    Arch Microbiol; 1998 Feb; 169(2):106-12. PubMed ID: 9446681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics and significance of yeasts' involvement in cassava fermentation for 'fufu' production.
    Oyewole OB
    Int J Food Microbiol; 2001 May; 65(3):213-8. PubMed ID: 11393690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of selected fungi to the reduction of cyanogen levels during solid substrate fermentation of cassava.
    Essers AJ; Jurgens CM; Nout MJ
    Int J Food Microbiol; 1995 Jul; 26(2):251-7. PubMed ID: 7577362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species.
    Pičmanová M; Neilson EH; Motawia MS; Olsen CE; Agerbirk N; Gray CJ; Flitsch S; Meier S; Silvestro D; Jørgensen K; Sánchez-Pérez R; Møller BL; Bjarnholt N
    Biochem J; 2015 Aug; 469(3):375-89. PubMed ID: 26205491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors that determine rates of cyanogenesis in bovine ruminal fluid in vitro.
    Majak W; McDiarmid RE; Hall JW; Cheng KJ
    J Anim Sci; 1990 Jun; 68(6):1648-55. PubMed ID: 2166729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amygdalin (Laetrile) and prunasin beta-glucosidases: distribution in germ-free rat and in human tumor tissue.
    Newmark J; Brady RO; Grimley PM; Gal AE; Waller SG; Thistlethwaite JR
    Proc Natl Acad Sci U S A; 1981 Oct; 78(10):6513-6. PubMed ID: 6796962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation and biochemical properties of predominant lactic acid bacteria from fermenting cassava for selection as starter cultures.
    Kostinek M; Specht I; Edward VA; Pinto C; Egounlety M; Sossa C; Mbugua S; Dortu C; Thonart P; Taljaard L; Mengu M; Franz CM; Holzapfel WH
    Int J Food Microbiol; 2007 Mar; 114(3):342-51. PubMed ID: 17188771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sugar uptake and involved enzymatic activities by yeasts and lactic acid bacteria: their relationship with breadmaking quality.
    Antuña B; Martínez-Anaya MA
    Int J Food Microbiol; 1993 May; 18(3):191-200. PubMed ID: 8494688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of a starter culture in the fermentation of cassava for the production of "kivunde", a traditional Tanzanian food product.
    Kimaryo VM; Massawe GA; Olasupo NA; Holzapfel WH
    Int J Food Microbiol; 2000 Jun; 56(2-3):179-90. PubMed ID: 10857544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.