These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 10634951)
21. Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid. Liu X; Ding C; Wang Z Biomaterials; 2001 Jul; 22(14):2007-12. PubMed ID: 11426878 [TBL] [Abstract][Full Text] [Related]
22. Apatite formation on poly(2-hydroxyethyl methacrylate)-silica hybrids prepared by sol-gel process. Costa RO; Pereira MM; Lameiras FS; Vasconcelos WL J Mater Sci Mater Med; 2005 Oct; 16(10):927-32. PubMed ID: 16167101 [TBL] [Abstract][Full Text] [Related]
23. Reactivity of plasma-sprayed wollastonite coating in simulated body fluid. Liu X; Ding C J Biomed Mater Res; 2002 Feb; 59(2):259-64. PubMed ID: 11745561 [TBL] [Abstract][Full Text] [Related]
24. Effects of ions in aqueous media on hydroxyapatite induction by silica gel and its relevance to bioactivity of bioactive glasses and glass-ceramics. Li P; Ohtsuki C; Kokubo T; Nakanishi K; Soga N; Nakamura T; Yamamuro T J Appl Biomater; 1993; 4(3):221-9. PubMed ID: 10146306 [TBL] [Abstract][Full Text] [Related]
25. Mechanism and kinetics of apatite formation on nanocrystalline TiO2 coatings: a quartz crystal microbalance study. Yang Z; Si S; Zeng X; Zhang C; Dai H Acta Biomater; 2008 May; 4(3):560-8. PubMed ID: 18053780 [TBL] [Abstract][Full Text] [Related]
26. Effect of molecular weight of poly(epsilon-caprolactone) on interpenetrating network structure, apatite-forming ability, and degradability of poly(epsilon-caprolactone)/silica nano-hybrid materials. Rhee SH Biomaterials; 2003 May; 24(10):1721-7. PubMed ID: 12593953 [TBL] [Abstract][Full Text] [Related]
27. Simple surface modification of poly(epsilon-caprolactone) to induce its apatite-forming ability. Oyane A; Uchida M; Yokoyama Y; Choong C; Triffitt J; Ito A J Biomed Mater Res A; 2005 Oct; 75(1):138-45. PubMed ID: 16044403 [TBL] [Abstract][Full Text] [Related]
28. Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid. Miyaza T; Kim HM; Kokubo T; Ohtsuki C; Kato H; Nakamura T Biomaterials; 2002 Feb; 23(3):827-32. PubMed ID: 11771702 [TBL] [Abstract][Full Text] [Related]
29. Surface modifications of titanium in calcium-ion-containing solutions. Hanawa T; Kon M; Ukai H; Murakami K; Miyamoto Y; Asaoka K J Biomed Mater Res; 1997 Mar; 34(3):273-8. PubMed ID: 9086396 [TBL] [Abstract][Full Text] [Related]
30. Fluoride-containing nanoporous calcium-silicate MTA cements for endodontics and oral surgery: early fluorapatite formation in a phosphate-containing solution. Gandolfi MG; Taddei P; Siboni F; Modena E; Ginebra MP; Prati C Int Endod J; 2011 Oct; 44(10):938-49. PubMed ID: 21726240 [TBL] [Abstract][Full Text] [Related]
31. Micropattern formation of apatite by combination of a biomimetic process and transcription of resist pattern. Ozawa N; Yao T J Biomed Mater Res; 2002 Dec; 62(4):579-86. PubMed ID: 12221706 [TBL] [Abstract][Full Text] [Related]
32. Surface structure and apatite-forming ability of polyethylene substrates irradiated by oxygen cluster ion beams. Kawashita M; Itoh S; Araki R; Miyamoto K; Takaoka GH J Biomed Mater Res A; 2007 Sep; 82(4):995-1003. PubMed ID: 17335033 [TBL] [Abstract][Full Text] [Related]
33. Nanostructured materials based on mesoporous silica and mesoporous silica/apatite as osteogenic growth peptide carriers. Mendes LS; Saska S; Martines MA; Marchetto R Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4427-34. PubMed ID: 23910362 [TBL] [Abstract][Full Text] [Related]
34. Calcium phosphate formation at the surface of bioactive glass in vitro. Andersson OH; Kangasniemi I J Biomed Mater Res; 1991 Aug; 25(8):1019-30. PubMed ID: 1918106 [TBL] [Abstract][Full Text] [Related]
35. Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. Tanahashi M; Matsuda T J Biomed Mater Res; 1997 Mar; 34(3):305-15. PubMed ID: 9086400 [TBL] [Abstract][Full Text] [Related]
36. The effect of surface silanol groups on the deposition of apatite onto silica surfaces: a computer simulation study. Mkhonto D; de Leeuw NH J Mater Sci Mater Med; 2008 Jan; 19(1):203-16. PubMed ID: 17597358 [TBL] [Abstract][Full Text] [Related]
37. In vitro bioactivity and degradation behavior of silica xerogels intended as controlled release materials. Radin S; Falaize S; Lee MH; Ducheyne P Biomaterials; 2002 Aug; 23(15):3113-22. PubMed ID: 12102182 [TBL] [Abstract][Full Text] [Related]
38. Apatite formation on PDMS-modified CaO-SiO2-TiO2 hybrids prepared by sol-gel process. Chen Q; Miyaji F; Kokubo T; Nakamura T Biomaterials; 1999 Jun; 20(12):1127-32. PubMed ID: 10382828 [TBL] [Abstract][Full Text] [Related]
39. In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method. Ning CQ; Zhou Y Biomaterials; 2002 Jul; 23(14):2909-15. PubMed ID: 12069332 [TBL] [Abstract][Full Text] [Related]
40. Controlled release of strontium ions from a bioactive Ti metal with a Ca-enriched surface layer. Yamaguchi S; Nath S; Matsushita T; Kokubo T Acta Biomater; 2014 May; 10(5):2282-9. PubMed ID: 24486909 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]