These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 10636047)

  • 1. An O(2n) volume molecular algorithm for Hamiltonian path.
    Fu B; Beigel R; Zhou FX
    Biosystems; 1999 Oct; 52(1-3):217-26. PubMed ID: 10636047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bounded complexity of DNA computing.
    Garzon MH; Jonoska N; Karl SA
    Biosystems; 1999 Oct; 52(1-3):63-72. PubMed ID: 10636031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA computing the Hamiltonian path problem.
    Lee CM; Kim SW; Kim SM; Sohn U
    Mol Cells; 1999 Oct; 9(5):464-9. PubMed ID: 10597033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro flow bio-molecular computation.
    Gehani A; Reif J
    Biosystems; 1999 Oct; 52(1-3):197-216. PubMed ID: 10636046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solving the set cover problem and the problem of exact cover by 3-sets in the Adleman-Lipton model.
    Chang WL; Guo M
    Biosystems; 2003 Dec; 72(3):263-75. PubMed ID: 14643494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solving a Hamiltonian Path Problem with a bacterial computer.
    Baumgardner J; Acker K; Adefuye O; Crowley ST; Deloache W; Dickson JO; Heard L; Martens AT; Morton N; Ritter M; Shoecraft A; Treece J; Unzicker M; Valencia A; Waters M; Campbell AM; Heyer LJ; Poet JL; Eckdahl TT
    J Biol Eng; 2009 Jul; 3():11. PubMed ID: 19630940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solving the 3-SAT problem based on DNA computing.
    Liu W; Gao L; Liu X; Wang S; Xu J
    J Chem Inf Comput Sci; 2003; 43(6):1872-5. PubMed ID: 14632435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Path matching and graph matching in biological networks.
    Yang Q; Sze SH
    J Comput Biol; 2007; 14(1):56-67. PubMed ID: 17381346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution of cellular computing: nature's solution to a computational problem.
    Landweber LF; Kari L
    Biosystems; 1999 Oct; 52(1-3):3-13. PubMed ID: 10636025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro Identification of the Hamiltonian Cycle Using a Circular Structure Assisted DNA Computer.
    Sharma D; Ramteke M
    ACS Comb Sci; 2020 May; 22(5):225-231. PubMed ID: 32212630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new fast algorithm for solving the minimum spanning tree problem based on DNA molecules computation.
    Wang Z; Huang D; Meng H; Tang C
    Biosystems; 2013 Oct; 114(1):1-7. PubMed ID: 23871964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On solving 3CNF-satisfiability with an in vivo algorithm.
    Eng TL
    Biosystems; 1999 Oct; 52(1-3):135-41. PubMed ID: 10636038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general resolution of intractable problems in polynomial time through DNA Computing.
    Sanches CA; Soma NY
    Biosystems; 2016 Dec; 150():119-131. PubMed ID: 27693626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dynamic programming algorithm to predict synthesis processes of tree-structured compounds with graph grammar.
    Zhao Y; Tamura T; Hayashida M; Akutsu T
    Genome Inform; 2010; 24():218-29. PubMed ID: 22081602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient extraction of mapping rules of atoms from enzymatic reaction data.
    Akutsu T
    J Comput Biol; 2004; 11(2-3):449-62. PubMed ID: 15285901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Length bounded molecular computing.
    Fu B; Beigel R
    Biosystems; 1999 Oct; 52(1-3):155-63. PubMed ID: 10636040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved algorithms for enumerating tree-like chemical graphs with given path frequency.
    Ishida Y; Zhao L; Nagamochi H; Akutsu T
    Genome Inform; 2008; 21():53-64. PubMed ID: 19425147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fast algorithm for computing geodesic distances in tree space.
    Owen M; Provan JS
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):2-13. PubMed ID: 21071792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A space-efficient algorithm for the constrained pairwise sequence alignment problem.
    He D; Arslan AN
    Genome Inform; 2005; 16(2):237-46. PubMed ID: 16901106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-objective imperialist competitive algorithm (MOICA) for finding motifs in DNA sequences.
    Gohardani SA; Bagherian M; Vaziri H
    Math Biosci Eng; 2019 Feb; 16(3):1575-1596. PubMed ID: 30947433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.